Для чего нужна цитоплазма амебы

Амёба обыкновенная

ЦарствоЖивотные
ПодцарствоОдноклеточные
ТипКорненожки
РодАмёбы

К подцарству Одноклеточные относятся животные, тело которых состоит всего из одной клетки, большей частью микроскопического размера, но со всеми присущими организму функциями. В физиологическом отношении эта клетка представляет целый самостоятельный организм.

Двумя основными компонентами тела одноклеточных являются цитоплазма и ядро (одно или несколько). Цитоплазма окружена наружной мембраной. Она имеет два слоя: наружный (более светлый и плотный) — эктоплазму — и внутренний — эндоплазму. В эндоплазме находятся клеточные органоиды: митохондрии, эндоплазматическая сеть, рибосомы, элементы аппарата Гольджи, различные опорные и сократительные волокна, сократительные и пищеварительные вакуоли и др.

Среда обитания и внешнее строение обыкновенной амёбы

Простейшее живёт в воде. Это может быть и вода озера, и капля росы, и влага почвы, и даже вода внутри нас. Поверхность тела их очень нежная и без воды моментально высыхает. Внешне амёба похожа на сероватый студенистый комочек (0,2-05 мм), не имеющий постоянной формы.

Движение

Амёба «перетекает» по дну. На теле постоянно образуются меняющие свою форму выросты — псевдоподии (ложноножки). В один из таких выступов постепенно переливается цитоплазма, ложная ножка в нескольких точках прикрепляется к субстрату и происходит передвижение.

Внутреннее строение

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

Внутреннее строение амебы

Питание

Передвигаясь, амёба наталкивается на одноклеточные водоросли, бактерии, мелкие одноклеточные, «обтекает» их и включает в цитоплазму, образуя пищеварительную вакуоль.

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

Ферменты, расщепляющие белки, углеводы и липиды, поступают внутрь пищеварительной вакуоли, и происходит внутриклеточное пищеварение. Пища переваривается и всасывается в цитоплазму. Способ захвата пищи с помощью ложных ножек называется фагоцитозом.

Дыхание

Кислород расходуется на клеточное дыхание. Когда его становится меньше, чем во внешней среде, новые молекулы проходят внутрь клетки.

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

Молекулы углекислого газа и вредных веществ, накопившихся в результате жизнедеятельности, наоборот, выходят наружу.

Выделение

Пищеварительная вакуоль подходит к клеточной мембране и открывается наружу, чтобы непереваренные остатки выбросить наружу в любом участке тела. Жидкость поступает в тело амёбы по образующимся тонким трубковидным каналам, путём пиноцитоза. Откачиванием лишней воды из организма занимаются сократительные вакуоли. Они постепенно наполняются, а раз в 5-10 минут резко сокращаются и выталкивают воду наружу. Вакуоли могут возникать в любой части клетки.

Размножение

Амёбы размножаются только бесполым путём.

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

Выросшая амёба приступает к размножению. Оно происходит путём деления клетки. До деления клетки ядро удваивается, чтобы каждая дочерняя клетка получила свою копию наследственной информации (1). Размножение начинается с изменения ядра. Оно вытягивается (2), а затем постепенно удлиняется (3,4) и перетягивается посредине. Поперечной бороздкой делится на две половинки, которые расходятся в разные стороны — образуются два новых ядра. Тело амёбы разделяется на две части перетяжкой и образуется две новые амёбы. В каждую из них попадает по одному ядру (5). Во время деления происходит образование недостающих органоидов.

В течение суток деление может повторяться несколько раз.

Бесполое размножение — простой и быстрый способ увеличить число своих потомков. Этот способ размножения не отличается от деления клеток при росте тела многоклеточного организма. Разница в том, что дочерние клетки одноклеточного организма, расходятся, как самостоятельные.

Реакция на раздражение

Амёба обладает раздражимостью — способностью чувствовать и реагировать на сигналы из внешней среды. Наползая на предметы, она отличает съедобные от несъедобных и захватывает их ложноножками. Она уползает и прячется от яркого света (1),

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

механических раздражений и повышенной концентрации, вредных для нее веществ (2).

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

Такое поведение, состоящее в движении к раздражителю или от него, называется таксисом.

Половой процесс

Переживание неблагоприятных условий

Одноклеточное животное очень чувствительно к изменениям окружающей среды.

В неблагоприятных условиях (при высыхании водоёма, в холодное время года) амёбы втягивают псевдоподии. На поверхность тела из цитоплазмы выделяются значительное количество воды и вещества, которые образуют прочную двойную оболочку. Происходит переход в покоящееся состояние — цисту (1). В цисте жизненные процессы приостанавливаются.

Цисты, разносимые ветром, способствуют расселению амебы.

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

При наступлении благоприятных условиях амёба покидает оболочку цисты. Она выпускает псевдоподии и переходит в активное состояние (2-3).

Ещё одна форма защиты — способность к регенерации (восстановлению). Повреждённая клетка может достроить свою разрушенную часть, но только при условии сохранения ядра, так как там хранится вся информации о строении.

Жизненный цикл амёбы

Жизненный цикл амёбы прост. Клетка растёт, развивается (1) и делится бесполым путём (2). В плохих условиях любой организм может «временно умереть» — превратиться в цисту (3). При улучшении условий он «возвращается к жизни» и усиленно размножается.

Источник

Научная электронная библиотека

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебыучастие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебытранспортировка питательных веществ и утилизация продуктов обмена клетки;

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебыбуферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебыподдержание тургора (упругость) клетки;

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебывсе биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

Для чего нужна цитоплазма амебы. Смотреть фото Для чего нужна цитоплазма амебы. Смотреть картинку Для чего нужна цитоплазма амебы. Картинка про Для чего нужна цитоплазма амебы. Фото Для чего нужна цитоплазма амебы

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Источник

Простейшие. Амебиаз

Простейшие

Благодаря трудам Антони ван Левенгука и Луи Пастера мы стали понимать, чем именно вызываются так называемые «заразные» (контагиозные, инфекционные) болезни. Любой школьник сегодня сходу выпалит: «Вирусы и бактерии»! – а отличник добавит: «И грибки». Действительно, к настоящему времени описаны и классифицированы сотни тысяч вирусных, бактериальных и грибковых культур, многие из которых в отношении человека являются патогенными, а некоторые и смертоносными. Однако есть в микромире и другие формы жизни, для человека потенциально или реально опасные, но при этом не относящиеся ни к вирусам, ни к грибам, ни к бактериям. Таковы, в частности, протозоа («простейшие», protozoa) – одноклеточные микроорганизмы, имеющие в своем строении клеточное ядро и функциональные «манипуляторы» в виде жгутиков, ножек-псевдоподий и т.д. Этими двумя особенностями, – наличием клеточного ядра и функциональных органоидов, – простейшие отличаются от безъядерных бактерий. Кроме того, протозойные культуры способны размножаться как «бактериальным» агамогенезом (бесполое деление с последующей рекомбинацией разорванной ДНК), так и более совершенным способом гаметогенеза, подразумевающим образование предзародышевых половых клеток с обменом и передачей хромосомной информации. Большинство простейших могут использовать, в зависимости от условий, любой из этих способов. Еще одним ключевым отличием от бактерий является гетеротрофное питание: протозойные организмы неспособны синтезировать необходимые им органические вещества из неорганических и, таким образом, вынуждены искать другие источники – паразитировать, поглощая клетки более развитых макроорганизмов, «охотиться» на другие микроорганизмы (на те же бактерии, например) или питаться детритными, разлагающимися массами мертвой органики. Наконец, по сравнению с бактериями и, тем более, с вирусами – простейшие гораздо крупнее. Их размеры относятся, как правило, к микрометровому диапазону (10-50 миллионных долей метра, т.е. сотые доли миллиметра). Самые мелкие из простейших, – например, очень опасная для определенных категорий населения токсоплазма, внутриклеточный паразит, – это всего один-два микрометра, что сопоставимо с размерами больших бактерий (габариты которых составляют, в среднем, от 0,3 до 5 мкм; впрочем, и среди вирусов, обычно нанометровых, тоже известны микрометровые «гиганты»), но многие протозойные формы вырастают до нескольких миллиметров, т.е. человек с нормальным зрением легко различает их невооруженным глазом – таковы, например, некоторые виды инфузорий или планктонных радиолярий. Диаметр же глубоководной ксенофиофоры, ацетабулярии или валонии пузатой вообще измеряется сантиметрами, хотя все эти организмы являются одноклеточными и классифицируются как простейшие.
Следует отметить, говоря о классификациях, что на разных этапах развития биологической науки простейшим в иерархии живой природы отводились различные позиции. Сегодня большинство специалистов считает их пред‑животными, – примитивной древней формой жизни на Земле (возраст протозоа составляет примерно 2-2,5 млрд лет), – и относит простейших именно к животному царству. Соответственно, протозойные заболевания следует считать скорее паразитарными, нежели инфекционными.

Суммируя сказанное, еще раз вкратце проследим, какое место в биосфере Земли занимает тот микроорганизм, речь о котором пойдет ниже.

Простейшие представляют собой подцарство одноклеточных животных или, скажем осторожней, живых существ, насчитывающее свыше 30 тысяч видов. Размерами они в разы или на порядок крупнее бактерий, и на два-три порядка крупнее вирусов. Способны как к половому, так и к бесполому размножению. Наряду с водорослями и микоидами (псевдогрибами) относятся к протистам, – досл. «предшественникам», то есть самым первым, низшим, примитивным формам жизни на Земле; несмотря на это (а скорее, благодаря этому), отлично адаптированы к широкому спектру условий. Неблагоприятные условия пережидают, иногда годами, в форме «спящих» цист, защищенных оболочкой; в благоприятной для них ситуации активизируются и проходят несколько морфологически разных стадий жизненного цикла. Обладают органоидами, т.е. своеобразными клеточными выростами, появляющимися по мере надобности, – ложноножками (псевдоподиями), жгутиками, иногда ртами-цитостомами, – с помощью которых могут передвигаться и захватывать пищу, метаболизируемую затем в полостях-вакуолях. Питание гетеротрофное: паразитическое, хищническое или сапротрофное (консументное либо редуцентное). Ведут одиночное или колониальное существование.

После всего этого выражение «простой, как амеба» уже не кажется особо удачным. Не так уж они просты, эти амебы, и далеко не так безопасны, как представлялось лет двести назад.

Амебиаз

Тяжелое заболевание, названное амебной дизентерией, амебным колитом или просто амебиазом, – известно с 1875 года. Первое клиническое описание принадлежит коренному петербуржцу, а впоследствии киевскому профессору А.Ф.Лёшу. Двумя годами раньше, в 1873 году, им же был открыт возбудитель этой болезни, который оказался типичным представителем протозойного подцарства. Латинское имя амебы «Entamoeba histolytica» достаточно красноречиво: его можно перевести как «кишечная тканеразъедающая амеба». Классическая (но не единственная из возможных, см. ниже) локализация этой протозойной инвазии – толстый кишечник.
К амебиазам, строго говоря, относят не только кишечную форму, но и прочие амебные паразитозы – например, амебный кератит (воспаление роговицы глаза) или практически неизлечимый амебный менингоэнцефалит. Однако эти заболевания вызываются амебами других родов и встречаются несравнимо реже кишечного амебиаза, поэтому термин преимущественно ассоциируется именно с дизентерией или колитом амебной этиологии.

Источниками, которые ориентируются на данные ВОЗ, доля носителей гистолитической амебы оценивается на уровне 10% населения Земли. Независимые авторы публикуют более сдержанные оценки: примерно 6%, что, впрочем, тоже составляет огромное число людей – около полумиллиарда человек. Активная клиническая форма заболевания развивается у каждого десятого, при этом у каждого десятого из заболевших – по фульминантному (молниеносному) типу. Прогноз считается благоприятным, однако в статистике смертности от паразитарных заболеваний амебная дизентерия занимает второе место, уступая лишь малярии. Летальность составляет один-два случая на тысячу заболевших.

Жизненный цикл

Из стадии «выжидающей» цисты гистолитическая амеба выходит при попадании в организм хозяина, – как правило, на этапе достижения границы между тонким и толстым кишечником. В активной трофозоитной (вегетативной) стадии амеба может существовать в четырех различных формах.

Просветная форма получила свое название в силу того, что обитает она в межстеночном пространстве толстой кишки, обычно в проксимальных (центральных, средних) отделах, питаясь перевариваемым детритом и представителями симбиотического кишечного микробиома. Для организма-хозяина это означает бессимптомное носительство. Большая вегетативная форма, или forma magna, является эритрофагом: она кормится захватом и поглощением красных кровяных телец – эритроцитов. Forma magna способна выделять ферменты, поражать поверхностную слизистую оболочку и, кроме того, внедряться более глубоко, в незащищенные подслизистые уровни кишечной стенки, где метаморфирует в сугубо патогенную тканевую форму. Если это произошло, то по мере дальнейшего размножения амебы (уже как внутритканного паразита) развивается специфическая клиника. Тканевая форма амебы остается эритрофагом, однако также продуцирует ферменты-цитолизины, которые растворяют и разлагают клетки кишечной стенки, вследствие чего образуются абсцессы, а после их вскрытия в просвет кишки – глубокие язвы, заполненные творожистым гнойно-некротическим содержимым; таким образом, амебиаз фактически приобретает характер язвенного колита. Утяжеляющим фактором является инокуляция: в образовавшиеся язвенные дефекты может дополнительно проникнуть иная патогенная микрофлора, попавшая в кишечник. При длительном или хроническом течении формируются гранулемы (амебиомы) – плотные опухолевидные образования из клеток соединительной ткани.

По мере приближения к терминальным отделам кишечника за счет перистальтики (с соответствующим изменением состава и плотности каловых масс) амеба переходит сначала в предцистную форму вегетативной стадии, а затем и в «спокойную», анабиотическую стадию цисты. У одного и того же носителя или больного в кале могут одновременно наблюдаться, кроме цист, все четыре вегетативные формы, однако все они, – в отличие от цисты, – неустойчивы к условиям внешней среды и снаружи быстро погибают.
Кишечный вариант гистолитического амебиаза является наиболее распространенным, однако этот же возбудитель способен проникать с током крови и в другие зоны организма – чаще всего в печень, где образует плохо поддающиеся диагностике абсцессы. Описаны также легочный, кожный и др. варианты.

Заражение

Амебная дизентерия относится к антропонозам: источником распространения является хронический носитель, даже если сам он не обнаруживает клинически значимой симптоматики. При каждой дефекации в окружающее пространство от одного носителя попадают десятки миллионов зрелых и способных к активизации цист. В зависимости от температуры, влажности и характера среды, в которой они оказываются в ходе дальнейшего канализирования (почва, сточные воды и т.д.), цисты гистолитической амебы могут сохранять жизнеспособность в течение нескольких месяцев; на продуктах питания, стекле, металле и пластике, в водопроводной воде, организме мух и т.д., – от нескольких суток до нескольких недель. Попадая в конечном итоге на кожу, цисты остаются опасными в течение 5-7 минут, но под ногтями – до часа. Этого достаточно, чтобы возбудитель пероральным путем проник в организм (как правило, с приемом пищи), т.е. амебиаз является типичной «болезнью грязных рук».

Таким образом, основные пути заражения – алиментарный (с зараженными продуктами питания или водой) и контактно-бытовой. Инфицирование гистолитической и другими патогенными амебами может также произойти при купании в загрязненных стоячих водоемах. Прослеживается определенная сезонность (весна-лето) и эндемичность: амебиаз особенно распространен в теплых и жарких странах третьего мира, которые характеризуются низким уровнем социально-экономического развития, санитарно-гигиенической культуры и системы здравоохранения. В более развитых северных государствах вспышки заболеваемости ранее отмечались спорадически; как правило, очагом становились учреждения закрытого типа, где большие группы людей находятся в постоянном тесном контакте, а основной причиной оказывалась зараженная цистами вода. Однако в последнее время, – с интенсификацией трудовых и вынужденных миграционных процессов, делового и культурного туризма, – во многих регионах, ранее амебиазу практически не подверженных, отмечается достоверная тенденция к учащению отдельных клинических случаев и эпидемических вспышек.
Главными факторами риска выступает несоблюдение элементарной гигиены, потребление необработанной пищи и ослабленный иммунитет.

Симптоматика

Продолжительность инкубационного периода варьирует от недели до четырех и более месяцев. Различают острый и хронический типы течения, несколько степеней тяжести, кишечную и генерализованную (внекишечную) клинические формы амебиаза. Манифестные проявления обычно нарастают постепенно, без повышения температуры тела и других признаков интоксикации; иногда с субфебрилитетом и общим недомоганием, снижением аппетита, слабостью. Встречаются, однако, и значительно более острые манифестации. На первом этапе учащается стул – от 4-6 до, в дальнейшем, 20 раз в сутки. Поначалу в каловых массах присутствует слизь, затем появляются примеси крови. Отмечаются боли в животе, преимущественно справа, а при нисходящем распространении процесса на прямую кишку – тенезмы (режущие или тянущие прямокишечные боли со спазмом сфинктера). Тошнота и рвота встречаются редко; все реже в настоящее время наблюдается и желеобразный «малиновый» кал, – симптом, некогда считавшийся патогномоничным и облигатным для колитов данного генеза.

В отсутствие лечения амебиаз из острой фазы за 1-1,5 мес приобретает хроническое (иногда непрерывное) течение, которое характеризуется чередованием ремиссий и рецидивов; в такой форме амебная дизентерия может протекать до десяти и более лет, если раньше не разовьется одно из присущих этому заболеванию тяжелых осложнений, – например, язвенное прободение кишечной стенки с последующим перитонитом, кишечное кровотечение, нагноение гранулематозных инфильтратов, фиброзная облитерация просвета (вплоть до непроходимости кишечника), гангрена толстой кишки и т.д.
Внекишечные формы проявляются симптоматикой, специфической для поражаемых органов, т.е. клиникой гепатита, плевропневмонии, абсцесса легкого и т.д. Кожная форма обычно присоединяется к кишечной (у длительно болеющих и потому тотально астенизированных пациентов), локализуется, в основном, в перианальной области и характеризуется глубокими зловонными язвами, кишащими вегетативной формой возбудителя. В редких случаях гистолитическая амеба попадает в головной мозг или околосердечную сумку, и практически всегда такая экспансия стремительно приводит к летальному исходу.

Диагностика

При остром начале или обострении заболевания убедительным свидетельством его амебной этиологии является обнаружение тканевой формы возбудителя в каловых массах (присутствие только цист и/или просветных форм не может считаться достаточным для постановки диагноза, поскольку доказывает лишь носительство). Однако микроскопия, учитывая нестойкость тканевой и большой вегетативной форм гистолитической энтамебы, должна производиться непосредственно после дефекации (в первые 10-15 минут). Кроме того, диагностику может усложнить присутствие в толстом кишечнике других, морфологически близких, но условно-патогенных или непатогенных амебных популяций.
В ходе ректороманоскопии или колоноскопии (сигмоидоскопии) на слизистой кишечника с 4-5 дня от манифестации обнаруживаются первые небольшие, до 0,5 см, гнойные изъязвления, которые к концу второй недели увеличиваются в количестве и размерах, достигая 2 см в диаметре и образуя, таким образом, характерную для заболевания картину. Однако очаг поражения может находиться выше предела досягаемости эндоскопических зондов, т.е. отсутствие наблюдаемых язв не исключает присутствия гистолитической амебы выше по кишечнику. Кроме того, даже при обнаружении изъязвленных участков необходима дифференциальная диагностика с другими видами язвенных колитов. Поэтому микроскопическое исследование препаратов кала, мокроты, гнойного отделяемого и т.д. повторяют многократно, пока возбудитель не будет установлен однозначно. По показаниям, – например, для выявления абсцессов в других зонах, – применяют ультразвуковое исследование, томографические методы, биопсию с последующим гистологическим анализом. Большое диагностическое значение имеют серологические методы, в основе которых лежит поиск специфических по отношению к гистолитической амебе антител (анализы РНИФ, ИФА и т.п.), однако эффективность этих методов существенно выше при внекишечной форме амебиаза (вероятность обнаружения патогена составляет 95% против 75% при кишечном амебиазе). Иногда для генетической идентификации возбудителя применяют полимеразную цепную реакцию (ПЦР).

Однако первоочередным шагом при подозрении на паразитарный характер состояния становится сбор и изучение подробных анамнестических сведений: где и как долго пребывал пациент в последнее время, купался ли в водоемах, употреблял ли во время зарубежных поездок местную экзотическую пищу и т.д.

Лечение

С 1960 года стандартом в лечении амебиазов, а также многих других протозойных и некоторых бактериальных инвазий, становится специально разработанная группа 5‑нитроимидазолов: метронидазол, более поздний тинидазол и другие производные (сегодня выпускается множество дженериков с теми же действующими веществами, но под собственными названиями, приводить которые здесь нет смысла). Кроме того, позже были созданы антипротозойные препараты прицельного действия, особо эффективные в отношении тканевых либо просветных форм (соответственно, тканевые и просветные амебоциды). После успешной эрадикации тканевой формы системным амебоцидом рекомендуется во избежание рецидивов применить просветный амебоцид. В некоторых случаях как основной или дополнительный препарат применяют антибиотики тетрациклинового ряда.

Больной госпитализируется; лечение в изолированном инфекционном боксе продолжается до тех пор, пока вероятность присутствия возбудителя в кишечнике не достигнет приемлемого минимума.

В запущенных и/или осложненных случаях зачастую не обойтись без жизнесохраняющего хирургического вмешательства.

Следует заметить, что собственная иммунная система пациента оказывает активное сопротивление гистолитической амебе, вырабатывая антитела и пытаясь ее уничтожить. Однако даже после успешного и полного излечения стойкий иммунитет не формируется, т.е. повторное инфицирование с развитием той же (или более тяжелой) клинической картины является вполне возможным.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *