Для чего нужны элементарные частицы
Известные нам элементарные (вроде бы) частицы
За последние 115 лет физики обнаружили, что практически всё материальное, включая камни, дождь, солнце и солнечный свет, океанские волны и радиоволны, можно описать в терминах частиц (и соответствующих им полей). Эксперименты обнаружили разнообразие типов частиц, которые на сегодняшний день кажутся нам элементарными (то есть, не состоят из более элементарных частиц). Всё сложное многообразие нашего привычного мира состоит из небольшого набора таких частиц. Остальные частицы мимолётны, они так быстро распадаются, что в обычных условиях мы их не встречаем. Но они могут хранить ключи к секретам Вселенной, остающимся недоступными для нас.
В этой статье вы найдёте небольшой обзор текущего понимания частиц и организации их в классы. Что-то вроде периодической таблицы частиц с парочкой подвохов. Кроме того, вы узнаете, что делает с частицами поле Хиггса и его критичную роль в жизни Вселенной.
Наше текущее понимание, вместе с простейшими гипотезами по поводу работы частицы и поля Хиггса сводится в набор уравнений под названием «Стандартная модель физики частиц», или просто «Стандартная модель». Элементарные частицы в Стандартной модели исторически обладают очень странными названиями, а также большим разбросом масс. На рис. 1:
• Я нарисовал более тяжёлые частицы сверху, а лёгкие – снизу. По моей логике, безмассовые частицы – это минимальный уровень, а верхнего предела для массы частиц нет. То есть, внизу есть жёсткий пол, а вверху – лишь небо.
• Вместо масс я привожу эквивалентные массы-энергии (E = mc 2 ), которые обычно используются специалистами по физике частиц. Следить за энергией, которая не пропадает и не появляется, проще, чем следить за массой частиц, которая может изменяться в определённых процессах, к примеру, при распаде. Единица ГэВ примерно равна массе-энергии легчайшего атома, водорода.
• Я обозначил три класса частиц: заряженные лептоны (синие диски), нейтрино (чёрные диски) и кварки (красные диски). Кварки обычно делят на два класса, верхние и нижние, отличающиеся только электрическим зарядом. Важность такой классификации станет ясной позже.
• В прямоугольниках я указал три взаимодействия вместе с их частицами-переносчиками. Четвёртое взаимодействие, гравитацию, я исключил, чтобы не засорять картинку.
• Поле Хиггса (или нечто, играющее его роль) в природе в среднем ненулевое. Я его обозначил через зелёный фон.
Что же это за частицы? У всех них есть античастицы, но для краткости я их опускаю. Давайте по-быстрому пробежимся по структуре материи, разбирая её до тех пор, пока не доберёмся до нужного уровня.
Практически все аспекты нашего мира определяются этими частицами. Но существуют и другие. Электрон, нейтрино-1, верхний кварк и нижний кварк называют одним «поколением» частиц – в данном случае под поколением имеется в виду примерно то же, что у фамильного дерева. Существуют два более тяжёлых поколения, в каждом из которых есть утяжелённые копии этих четырёх частиц.
• Второе поколение состоит из мюона, нейтрино-2, очарованного кварка и странного кварка.
• Третье поколение состоит из тау, нейтрино-3, t-кварка и b-кварка.
Структура поколений делит эти частицы на горизонтальные слои. Их также можно разделить вертикально, на упомянутые мною классы: люди часто говорит о «частицах электронного типа» или «заряженных лептонах», имея в виду электрон, мюон и тау, говорят о «нейтрино» в общем, и делят кварки на «верхние» (верхний, очарованный, t) и «нижние» (нижний, странный, b).
Возможно, вам интересно, почему у нейтрино такие скучные имена по сравнению с другими частицами. Мы их звали по-другому, но за последние 20 лет узнали о них много нового, и всё ещё продолжаем узнавать. Может, когда уляжется пыль, мы дадим им новые имена.
Про частицу Хиггса мы мало что знаем, но в ближайшее время узнаем больше.
Давайте приглядимся к различным массам. У них не только огромный разброс, но и нет какой-то явной системы. Вот некоторые замечания по поводу масс, начиная с самых лёгких частиц:
• Фотон и гравитон, вероятно, не имеют массы – их масса должна быть удивительно малой, чтобы существовали наблюдаемые межгалактические магнитные поля и огромные структуры Вселенной.
• Глюоны не имеют массы, насколько это вообще имеет смысл – они проводят свою жизнь в плену внутри таких адронов, как протоны, и измерить их массу напрямую непросто.
• Теоретики давно спорили по поводу наличия массы у нейтрино. Эксперименты последнего десятилетия разрешили этот спор (хотя из-за того, что полученные свидетельства непрямые, ещё есть пространство для манёвра). Массы нейтрино очень малы, самый тяжёлый из них по крайней мере в миллиард раз легче легчайшего атома (водорода), а масса самого лёгкого ещё меньше.
• Массы остальных частиц известны. Электрон примерно в 1800 раз легче водорода, t-кварк примерно в 400 000 раз тяжелее электрона, и всего на несколько процентов легче атома золота. Масса частиц W и Z примерно вполовину меньше массы t-кварка.
• Все обладающие значительной массой частицы имеют её из-за взаимодействия с полем Хиггса. Нейтрино могут получать массу не напрямую, но поле Хиггса играют важную роль и для них тоже. Этот факт я отметил через зелёные рамки различной толщины у дисков, обозначающих частицы.
• Масса-энергия частицы Хиггса — 125 ГэВ
На рис. 2 я сгруппировал частицы и взаимодействия по-другому.
На рисунке показано, какие частицы напрямую влияют на какие. Я провёл линии между всеми типами частиц, напрямую взаимодействующими друг с другом. Что интересно отметить:
• Ничего из того, что часто называют частицами материи – заряженные лептоны, нейтрино или кварки – не взаимодействует друг с другом.
• Частицы материи взаимодействуют напрямую только с частицами, переносящими взаимодействия!
Это объясняет, почему переносчики взаимодействия называются именно так. Когда электрон в атоме взаимодействует с верхним кварком в атомном ядре, он делает это не напрямую. Электрон напрямую взаимодействует с фотоном, кварк взаимодействует с фотоном, и в результате (он довольно сложный и неинтуитивный) получается, что электрон притягивается к кварку, и наоборот. Точно так же взаимодействие между двумя кварками получается непрямым, и происходит из прямого взаимодействия кварков с глюонами. Все известные взаимодействия между частицами материи происходят не напрямую, в них участвуют переносчики взаимодействий. Когда вы открываете дверь, работают фотоны.
На рисунке также отмечено несколько важных свойств взаимодействий и классов частиц:
• Все частицы определённого класса подчиняются одному взаимодействию – именно это и определяет их принадлежность к классу. Нейтрино чувствуют только слабое взаимодействие. Сильное взаимодействие чувствуют только кварки и глюоны.
• Изогнутыми линиями показано, что некоторые из переносчиков взаимодействий напрямую взаимодействуют сами с собой или с другими переносчиками. Глюоны взаимодействуют сами с собой, но фотон сам с собой не взаимодействует (по крайней мере, не напрямую).
• В некотором смысле частица Хиггса также является переносчиком взаимодействия. Но это особый случай. Чем сильнее эффект, оказываемый взаимодействием Хиггса на частицу, тем больше масса этой частицы в ненулевом поле Хиггса. (Это утверждение верно для известных частиц, но может оказаться неверным для ещё не открытых). Я обозначил это градиентом зелёного поля, которое сверху становится темнее, что означает усиление эффекта для тяжёлых частиц. Точно так же частица Хиггса сильнее взаимодействует с тяжёлыми частицами, чем с лёгкими.
Этот мир выглядит ужасно странно, но хотите вы, или нет – он наш. Можно увидеть некоторые грубо обозначенные схемы, но всё-таки чёткой организации нет. Дезорганизация тем или иным образом оказывается связанной с полем (или полями) Хиггса.
Элементарные частицы
Из истории вопроса
Первым из тех, кто задумался о существовании мельчайших частиц, из которых состоят все вещества и окружающие предметы, был древнегреческий философ Демокрит. Он был первым, кто высказал предположение о существовании фундаментальных частиц. Согласно письменным источникам, случилось это в 4 веке до нашей эры. Демокрит дал название атому и определил, что это неделимая частица материи.
В течение ряда веков понятие об атомах носило скорее философский, чем физический смысл. И только начиная с 19 века представление об атомах стали использовать сначала для объяснения химических, а затем и физических процессов.
В течение первой трети 20 века было установлено, что атом имеет сложное строение, которое предполагает наличие ядра и расположенных вокруг него электронов. Эрнест Резерфорд предложил орбитальную модель строения атома, согласно которой электроны движутся вокруг ядра по определенным орбитам. Он же во время опытов по расщеплению ядер атомов установил существование протонов.
Открытие нейтронов принадлежит известному английскому физику Джеймсу Чедвику. Он установил, что ядра атомов имеют сложное строение. Так возникла протон-нейтронная теория строения ядер, разработкой которой занимались немецкий исследователь Вейнер Гейзенберг и наш соотечественник, физик-теоретик, лауреат Сталинской премии Дмитрий Дмитриевич Иваненко.
Существование позитрона было предсказано англичанином Полем Дираком. Эта положительно заряженная частица, имеющая такую же массу и такой же (по модулю) заряд, что и электрон, была открыта американским физиком-экспериментатором Карлом Дейвидом Андерсеном в космических лучах.
До середины 20 века было открыто большое количество элементарных частиц. Это стало возможно благодаря широкому исследованию космических лучей, внедрению ускорительной техники, развитию ядерной физики.
Виды частиц
В наше время известно порядка 400 элементарных или субъядерных частиц. Большинство из них нестабильно: одни частицы могут самопроизвольно превращаться в другие с течением времени. Исключением из этого являются нейтрино, фотон, протон и электрон.
По продолжительности существования выделяют следующие группы частиц:
Основые свойства элементарных частиц
Одним из наиболее важных свойств элементарных частиц является их способность к взаимным превращениям. Частицы способны поглощаться (возникать) и испускаться (исчезать). Это относится как к стабильным, так и к нестабильным частицам. Разница лишь в том, что стабильные частицы могут превращаться не самопроизвольно, а в результате взаимодействия с другими частицами.
В процессе аннигиляции (исчезновения) позитрона и электрона появляется фотон большой энергии.
При столкновении фотона, несущего достаточный заряд энергии, с ядром атома появляется электрон-позитронная пара.
Частицы и античастицы
Электрон является двойником позитрона. Антипротон отличается от протона наличием у него отрицательного электрического заряда. Нейтрон не имеет заряда. Антинейтрон отличается от нейтрона знаком магнитного момента и барионного заряда.
Наличие античастиц установлено для всех элементарных частиц. Встреча частицы и античастицы сопровождается аннигиляцией, в результате которой обе частицы превращаются в кванты излучения или частицы других видов.
Ученые предполагают существование антивещества. Теоретически, это возможно, если в ядре будут антинуклоны, а в оболочке атома позитроны. Взаимодействие вещества и антивещества может привести к выделению огромного количества энергии, которое будет превосходить энергию ядерных и термоядерных реакций.
Группы элементарных частиц
Группа | Название частицы | Символ | Масса (в электронных массах) | Электрический заряд | Спин | Время жизни (с) | ||
Частица | Античастица | |||||||
Фотоны | Фотон | γ | 0 | 0 | 1 | Стабилен | ||
Лептоны | Нейтрино электронное | ν e | ν e |
Выделяют три основные группы элементарных частиц:
Фотоны представлены одной частицей. Это фотон – носитель электромагнитного взаимодействия.
К лептонам относятся легкие частицы:
Андроны делятся на две основные подгруппы:
К подгруппе мезонов относятся:
Спин всех мезонов равен нулю.
Кварковая гипотеза
Количество уже открытых и вновь открываемых частиц позволяет предположить, что существуют какие-то более мелкие фундаментальные частицы. В середине 20 века американский физик Мюррей Гелл-Ман выдвинул гипотезу существования кварков, фундаментальных частиц, из которых построены тяжелые элементарные частицы.
Согласно теории Гелл-Мана существует три кварка и три антикварка. Они могут объединяться, образуя различные сочетания.
В состав бариона входит три кварка. Для того, чтобы получить антибарион, должны объединиться три антикварка. Мезон образует пара кварк и антикварк.
Эта теория позволила объяснить существование уже открытых частиц и существование других, еще неизвестных науке. При этом, ряд свойств предсказанных частиц оказался неожиданным для исследователей.
Электрический заряд кварков должен выражаться дробными числами, равными 2 3 и 1 3 элементарного заряда.
Поиски кварков в космических лучах и на современных ускорителях высоких энергий оказались безуспешными. Считается, что кварки обладают очень большой массой. В связи с этим, получить кварки при тех энергиях, которые можно получить в современных ускорителях, не получается. Тем не менее, установлено, что кварки существуют внутри тяжелых элементарных частиц, таких как андроны.
Фундаментальные взаимодействия в природе
Фундаментальные взаимодействия – это процессы, сильно различающиеся по уровню энергии и времени протекания, в которые вступают элементарные частицы. Фундаментальными их называют потому, что их невозможно свести в другим, более простым взаимодействиям.
Выделяют 4 вида фундаментальных взаимодействий:
Сильное взаимодействие
Это вид фундаментального взаимодействия также носит название ядерного, так как оно обуславливает прочную связь между нуклонами в ядре атома. Из числа элементарных частиц в сильном взаимодействии принимают участие андроны (мезоны и барионы).
Сильное взаимодействие считается короткодействующим, так как проявляется на расстоянии порядка 10 – 15 м и менее.
Электромагнитное взаимодействие
Благодаря этому виду взаимодействия возможно существование молекул и атомов. Оно определяет большинство свойств веществ, находящихся в трех агрегатных состояниях (твердом, жидком и газообразном). Оно обуславливает протекание процессов поглощения и излучения фотонов атомами и молекулами вещества, а также целый ряд других физических и химических процессов. Кулоновское отталкивание, существующее между протонами, объясняет неустойчивость ядер атомов с большими массовыми числами.
В электромагнитном взаимодействии могут участвовать любые частицы, которые обладают электрическим зарядом, а также кванты электромагнитного поля фотоны.
Слабое взаимодействие
Этот вид взаимодействия определяет ход наиболее медленных процессов, которые протекают в микромире, в том числе с участием нейтрино или антинейтрино.
В этом виде взаимодействия могут принимать участие любые элементарные частицы.
Также сюда можно отнести процессы распада частиц с большим временем жизни ( τ ≥ 10 – 10 с ), которые протекают без участия нейтрино.
Гравитационное взаимодействие
В связи с тем, что масса элементарных частиц мала, силами гравитационного воздействия между ними можно пренебречь. Гравитация имеет значение при взаимодействии космических объектов, чья масса огромна.
Теория обменного взаимодействия
В первой трети прошлого столетия у исследователей появилась гипотеза о том, что все взаимодействия в мире элементарных частиц осуществляются посредством обмена квантами какого-либо поля. Выдвинули эту гипотезу советские ученые И.Е. Тамм и Д.Д. Иваненко. Они провели параллели между взаимодействиями, которые возникают в результате обмена частицами, и обменом валентными электронами, которые при образовании ковалентной химической связи объединяются на незаполненных электронных оболочках.
Обменное взаимодействие – это взаимодействие, которое осуществляется путем обмена частицами.
Электромагнитное взаимодействие, которое наблюдается между заряженными частицами, сопровождается обменом фотонами, квантами электромагнитного поля.
Подтверждением верности теории обменного взаимодействия стали теоретические выкладки японского физика Х. Юкавы, который доказал, что сильное взаимодействие между нуклонами можно объяснить обменом гипотетическими частицами, которые получили название мезонов. Юкава вычислил массу этих частиц. Она оказалась приблизительно равно 300 электронным массам.
Теория электрослабого взаимодействия рассматривает электромагнитное поле и поле слабого взаимодействия как две разные характеристики одного поля. В таком поле помимо квантов взаимодействие обеспечивают и векторные бозоны.
Теория Великого объединения
После того, как удалось объединить в одну модель слабое и электромагнитное взаимодействия, у исследователей появилась уверенность в том, что связаны между собой все виды взаимодействий. Единственное, чего не хватает для полноты картины, это физического подтверждения таких взаимодействий. До получения доказательств теория остается лишь привлекательной научной гипотезой.
Для того, чтобы объединить слабое, электромагнитное и гравитационное взаимодействия, физики-теоретики предположили существование гипотетической частицы под названием гравитон. Однако до настоящего времени существование такой частицы не было подтверждено в ходе экспериментов.
Предполагается, что получить подтверждение теории Великого объединения в современных ускорителях невозможно. А все потому, что единое поле, которое объединяет все виды взаимодействий, существует только при очень больших энергиях частиц. Такая энергия частицы могла наблюдаться только на самых ранних этапах существования вселенной, сразу после Большого взрыва.
По мере расширения вселенной энергия частиц уменьшается. Из единого поля при энергиях частиц ≤ 1019 Г э В выделилось гравитационное взаимодействие. При энергиях порядка 1014 Г э В разделились сильное и электрослабое взаимодействия. При энергиях порядка 103 Г э В все четыре вида фундаментальных взаимодействий оказались разделенными. Параллельно этому началось формирование более сложных форм материи: нуклонов, ядер атомов, атомов, ионов.
Основываясь на законах физики, описывающих взаимодействие элементарных частиц, создана модель эволюции вселенной, на которую опирается вся современная космология.
Стандартная модель элементарных частиц для начинающих
«Мы задаёмся вопросом, почему группа талантливых и преданных своему делу людей готова посвятит жизнь погоне за такими малюсенькими объектами, которые даже невозможно увидеть? На самом деле, в занятиях физиков элементарных частиц проявляется человеческое любопытство и желание узнать, как устроен мир, в котором мы живём» Шон Кэрролл
Если вы всё ещё боитесь фразы квантовая механика и до сих пор не знаете, что такое стандартная модель — добро пожаловать под кат. В своей публикации я попытаюсь максимально просто и наглядно объяснить азы квантового мира, а так же физики элементарных частиц. Мы попробуем разобраться, в чём основные отличия фермионов и бозонов, почему кварки имеют такие странные названия, и наконец, почему все так хотели найти Бозон Хиггса.
Из чего мы состоим?
Ну что же, наше путешествие в микромир мы начнём с незатейливого вопроса: из чего состоят окружающие нас предметы? Наш мир, как дом, состоит из множества небольших кирпичиков, которые особым образом соединяясь, создают что-то новое, не только по внешнему виду, но ещё и по своим свойствам. На деле, если сильно к ним приглядеться, то можно обнаружить, что различных видов блоков не так уж и много, просто каждый раз они соединяются друг с другом по-разному, образуя новые формы и явления. Каждый блок — это неделимая элементарная частица, о которой и пойдёт речь в моём рассказе.
Для примера, возьмём какое-нибудь вещество, пусть у нас это будет второй элемент периодической системы Менделеева, инертный газ, гелий. Как и остальные вещества во Вселенной, гелий состоит из молекул, которые в свою очередь образованы связями между атомами. Но в данном случае, для нас, гелий немного особенный, потому что он состоит всего из одного атома.
Из чего состоит атом?
Атом гелия, в свою очередь, состоит из двух нейтронов и двух протонов, составляющих атомное ядро, вокруг которого вращаются два электрона. Самое интересное, что абсолютно неделимым здесь является лишь электрон.
Интересный момент квантового мира
Чем меньше масса элементарной частицы, тем больше места она занимает. Именно по этой причине электроны, которые в 2000 раз легче протона, занимают гораздо больше места по сравнению с ядром атома.
Нейтроны и протоны относятся к группе так называемых адронов (частиц, подверженных сильному взаимодействию), а если быть ещё точнее, барионов.
Нейтрон, как ясно из его названия, является нейтрально заряженным, и может быть поделён на два нижних кварка и один верхний кварк. Протон, положительно заряженная частица, делится на один нижний кварк и два верхних кварка.
Да, да, я не шучу, они действительно называются верхний и нижний. Казалось бы, если мы открыли верхний и нижний кварк, да ещё электрон, то сможем с их помощью описать всю Вселенную. Но это утверждение было бы очень далеко от истины.
Главная проблема — частицы должны как-то между собой взаимодействовать. Если бы мир состоял лишь из этой троицы (нейтрон, протон и электрон), то частицы бы просто летали по бескрайним просторам космоса и никогда бы не собирались в более крупные образования, вроде адронов.
Фермионы и Бозоны
Достаточно давно учёными была придумана удобная и лаконичная форма представления элементарных частиц, названная стандартной моделью. Оказывается, все элементарные частицы делятся на фермионы, из которых и состоит вся материя, и бозоны, которые переносят различные виды взаимодействий между фермионами.
Разница между этими группами очень наглядна. Дело в том, что фермионам для выживания по законам квантового мира необходимо некоторое пространство, а для бозонов почти не важно наличие свободного места.
Фермионы
Группа фермионов, как было уже сказано, создаёт видимую материю вокруг нас. Что бы мы и где ни увидели, создано фермионами. Фермионы делятся на кварки, сильно взаимодействующие между собой и запертые внутри более сложных частиц вроде адронов, и лептоны, которые свободно существуют в пространстве независимо от своих собратьев.
Возникает вопрос, не найдут ли физики ещё несколько поколений частиц, которые будут еще более массивными, по сравнению с предыдущими. На него ответить трудно, однако теоретики считают, что поколения лептонов и кварков исчерпываются тремя.
Не находите никакого сходства? И кварки, и лептоны делятся на две группы, которые отличаются друг от друга зарядом на единицу? Но об этом позже.
Бозоны
Без них бы фермионы сплошным потоком летали по вселенной. Но обмениваясь бозонами, фермионы сообщают друг другу какой-либо вид взаимодействия. Сами бозоны же с друг другом практически не взаимодействуют.
На самом деле, некоторые бозоны всё же взаимодействуют друг с другом, но об этом будет рассказано более подробно в следующих статьях о проблемах микромира
Взаимодействие, передаваемое бозонами, бывает:
Оговорка о гравитационном взаимодействии.
Существование гравитонов экспериментально ещё не подтверждено. Они существуют лишь в виде теоретической версии. В стандартной модели в большинстве случаев их не рассматривают.
Вот и всё, стандартная модель собрана.
Проблемы только начались
Несмотря на очень красивое представление частиц на схеме, осталось два вопроса. Откуда частицы берут свою массу и что такое Бозон Хиггса, который выделяется из остальных бозонов.
Для того, что бы понимать идею применения бозона Хиггса, нам необходимо обратиться к квантовой теории поля. Говоря простым языком, можно утверждать, что весь мир, вся Вселенная, состоит не из мельчайших частиц, а из множества различных полей: глюонного, кваркового, электронного, электромагнитного и.т.д. Во всех этих полях постоянно возникают незначительные колебания. Но наиболее сильные из них мы воспринимаем как элементарные частицы. Да и этот тезис весьма спорный. С точки зрения корпускулярно-волнового дуализма, один и тот же объект микромира в различных ситуациях ведёт себя то как волна, то как элементарная частица, это зависит лишь от того, как физику, наблюдающему за процессом, удобнее смоделировать ситуацию.
Поле Хиггса
Оказывается, существует так называемое поле Хиггса, среднее значение которого не хочет стремиться к нулю. В результате чего, это поле старается принять некоторое постоянное ненулевое значение во всей Вселенной. Поле составляет вездесущий и постоянный фон, в результате сильных колебаний которого и появляется Бозон Хиггса.
И именно благодаря полю Хиггса, частицы наделяются массой.
Масса элементарной частицы, зависит от того, насколько сильно она взаимодействует с полем Хиггса, постоянно пролетая внутри него.
И именно из-за Бозона Хиггса, а точнее из-за его поля, стандартная модель имеет так много похожих групп частиц. Поле Хиггса вынудило сделать множество добавочных частиц, таких, например, как нейтрино.
Итоги
То, что было рассказано мною, это самые поверхностные понятия о природе стандартной модели и о том, зачем нам нужен Бозон Хиггса. Некоторые учёные до сих пор в глубине души надеются, что частица, найденная в 2012 году и похожая на Бозон Хиггса в БАКе, была просто статистической погрешностью. Ведь поле Хиггса нарушает многие красивые симметрии природы, делая расчёты физиков более запутанными.
Некоторые даже считают, что стандартная модель доживает свои последние годы из-за своего несовершенства. Но экспериментально это не доказано, и стандартная модель элементарных частиц остаётся действующим образцом гения человеческой мысли.