Для чего нужны усилительные и регенерационные пункты
НУП — необслуживаемые регенерационные (усилительные) пункты
В палате периодически всплывает вопрос о месте и способе кратковременно пересидеть, спрятаться, скажем так отдохнуть от навязчивого внимания самых опасных животных — двуногих хищников разной масти и материала — шерсть, кирза и т.п., или спастись от непогоды и животных.
Есть коллекторы — опасно, антисанитария, кроме того лица без определенного места жительства и бывшие интеллигентные люди сотрудничают с…
Проезжая по трассе или гуляя, вы наверняка замечали и обращали внимание на загадочные непонятные грибки и будки торчащие из земли.
Это НУПы — необслуживаемые регенерационные (усилительные) пункты — пункты в которых осуществляется регенерация (цифровая система передачи) или усиление (аналоговая, либо цифровая система передачи) сигнала.
Физически представляет зарытый в землю на небольшую глубину контейнер (например, бочку), в который помещен регенератор или усилитель. Зарытый контейнер, обычно имеет надстройку (деревянную, кирпичную, железную или железобетонную). Так же встречается расположение регенератора или усилителя в верхней части надстройки. В городской черте возможно расположение НРП/НУП в здании, на подземной станции метрополитена или распределительном шкафу.
Помимо регенерационной/усилительной аппаратуры, на НРП/НУП может располагаться аппаратура питания (внешнего, либо дистанционного), аккумуляторные батареи, устройства отопления, вентиляции и кондиционирования, устройства освещения, устройства телеконтроля (контроль давления воздуха в кабеле и в баллоне, контроль закрытия дверей и крышек, контроль наличия воды в камере, контроль температуры, контроль влажности, контроль питания), аппаратура содержания кабеля под избыточным воздушным давлением, электрические компрессорные установки, баллоны со сжатым воздухом.
В силу развала системы и смены оборудования, многие НУПы заброшены, разграблены и запущены.
Но старые системы еще работают на села, технологическая связь газовиков, нефтянников, энергетиков(бывает и у них под землей)
Внутри может быть уже рененератор ИКМ или ДСЛ- типа Орион.
ВНИМАНИЕ! Вскрывать не стоит, работает не трогайте. Если уж вскрыли, то сфотографируйте на память — но не разбирайте, посмотрели — закройте как было. БРАТЬ ТАМ НЕЧЕГО!
Обязательно проветрите. Были случаи когда идиоты задыхались.
Кроме того если это не дай бог «спецсвязь», то последствия любопытства могут быть печальными, до летального.
Не будьте пожалуйста обезьянами!
Вот как они выглядят:
——————
С уважением, Ярослав. avtokanal.com
Для чего нужны усилительные и регенерационные пункты
3.3 Организация двусторонних каналов
К большинству систем связи предъявляется требование обеспечения одновременной и независимой передачи сигналов в двух направлениях – требование двусторонней связи. Для организации двусторонней связи используются два канала однонаправленного действия, образующих двунаправленный четырехпроводный канал (рисунок 3.9). Проходящие через однонаправленный канал сигналы усиливаются (S А-Б и S Б-А ).
Рисунок 3.9 – Канал двустороннего действия
Двунаправленный двухпроводный канал образуется из четырехпроводного при помощи развязывающих устройств (РУ) [1]. Зажимы 1-1 РУ называют линейными. Прохождение сигналов от линейных зажимов РУ станции А к линейным зажимам РУ станции Б, а также в противоположном направлении показаны на рисунке 3.9 с помощью сплошной и штриховой линий.
Рисунок 3.10– Схема трансформаторной ДС
В случае сбалансированной ДС мощность входных сигналов, подводимых к зажимам 1-1 и зажимам 4-4, передается на соответствующие выходные зажимы 2-2 и 1-1 не полностью, а лишь частично, и входные сигналы испытывают так называемые рабочие затухания ДС а 4-1 = а 1-2 = 10lg2 = 3дБ. В реальных ДС за счет неидеальности трансформатора рабочие затухания несколько больше.
Переходное затухание а 42 реальной ДС также является конечной величиной. Оно зависит, в основном, от точности равенства входного сопротивления абонентской линии и балансного сопротивления. Точно выполнить это равенство на практике не представляется возможным, поскольку к одной и той же ДС могут подключаться абонентские линии с существенно различающимися характеристиками при неизменной величине балансного сопротивления. Величина переходного затухания а 42 трансформаторных ДС может быть определена по формуле:
где – балансное затухание трансформаторной ДС.
3.4 Организация двусторонних каналов
Различают две основные схемы:
Однополосная четырехпроводная (рисунок 3.11, а). Линейные тракты имеют совпадающие спектры. При использовании симметричных кабелей во избежание значительных взаимных влияний линейные тракты размещаются в различных кабелях. Такая схема называется двухкабельной. При использовании коаксиального кабеля взаимные влияния практически отсутствуют, поэтому коаксиальные пары могут размещаться в одном кабеле. Такая схема называется однокабельной.
Двухполосная двухпроводная (рисунок 3.11, б). Используется один и тот же линейный тракт. При этом связь в противоположных направлениях передачи организуется в разных полосах частот при помощи пары направляющих фильтров ФВЧ и ФНЧ (рисунок 3.12).
3.5 Коммутация каналов, сообщений и пакетов
Известны три способа коммутации: коммутация каналов, коммутация сообщений, коммутация пакетов [27].
На телефонных сетях наиболее распространенным способом коммутации является коммутация каналов (линий). Он характеризуется тем, что по переданному адресу представляется тракт между передатчиком и приемником на все время передачи информации в реальном масштабе времени. Недостатком этого способа является неэффективное использование тракта, так как информация (речевое сообщение) прерывается длительными паузами. В таких системах коммутации качество обслуживания вызовов оценивается вероятностью отказов в установлении соединения из-за занятости каналов (линий) и приборов коммутации (системы с потерями) или временем ожидания обслуживания вызова (в системах с ожиданием). Перечисленные показатели нормируются.
Способ коммутации сообщений характеризуется тем, что тракт между приемником и передатчиком заранее не устанавливается, а канал в нужном направлении предоставляется (по адресу, приписываемому в начале сообщения), только на время передачи сообщения, а в паузах этот канал используется для передачи других сообщений. Системы коммутации сообщений являются системами с ожиданием. Качество обслуживания вызовов оценивается по среднему времени задержки сообщения. Способ коммутации сообщений используется, когда не требуется работа в реальном масштабе времени. По сравнению с коммутацией каналов коммутация сообщений имеет следующие преимущества: повышается использование каналов; возможно использование разных типов каналов на разных участках; регистрируются и хранятся проходящие через узел сообщения.
При коммутации пакетов сообщение разбивается на части одинакового объема, называемые пакетами. Каждому пакету присваивается номер пакета и адрес получателя. Передача пакетов одного сообщения происходит аналогично передаче в системе с коммутацией сообщений и может осуществляться по одному или разным путям. В оконечном пункте пакеты собираются и выдаются адресату.
Каждый из способов коммутации имеет свои преимущества и недостатки и может быть эффективно использован в определенных условиях и для определенных видов информации.
3.6 Элементы теории телетрафика
Теория телетрафика – раздел теории массового обслуживания. Основы теории телетрафика заложил датский учёный А.К. Эрланг. Термин “трафик” соответствует термину “телефонная нагрузка”. Последовательность сообщений (занятий) создает нагрузку на системы передачи и коммутации. Она определяется потоком вызовов и длительностью занятий канала.
Вызов – требование источника на установление соединения или передачу сообщения.
Поток вызовов – последовательность моментов поступления вызовов.
Длительность занятия – среднее время, в течение которого занят обслуживающий прибор при одном занятии.
В общем случае потоки вызовов являются случайными процессами. Точное математическое описание потоков невозможно, поэтому используются их модели.
Наиболее распространена модель в виде простейшего потока вызовов – это стационарный ординарный поток без последействия.
В большинстве случаев поток вызовов в ЧНН от группы источников численностью > 100 удовлетворительно описывается простейшим потоком.
В том случае, если число источников меньше 100, используют модель примитивного потока.
Примитивный поток – ординарный поток, параметр которого прямо пропорционален числу свободных источников.
Телефонная нагрузка – общая длительность занятия обслуживающих приборов в течение некоторого промежутка времени.
Единица измерения нагрузки 1 часо-занятие.
Интенсивность телефонной нагрузки – величина нагрузки в единицу времени, измеряется в Эрлангах
1 Эрл = 1 часо-занятие / час
Интенсивность телефонной нагрузки имеет сильные колебания, в том числе и в течение дня.
Час наибольшей нагрузки [ЧНН] – период суток, в течение которого нвгрузка имеет наибольшее значение
Потери – часть поступающей нагрузки, которая не обслуживается из-за занятости обслуживающих приборов [16].
Различают виды коммутационных систем: коммутационные системы без потерь; коммутационные системы с потерями; коммутационные системы с ожиданием.
Дисциплиной обслуживания без потерь называется такая, при которой поступающий вызов немедленно обслуживается, и с потерями, если поступающий вызов либо получает отказ в обслуживании, либо обслуживание его задерживается на некоторое время.
По экономическим соображениям реальные коммутационные системы обычно проектируются с потерями. Различают следующие виды потерь: явные, условные и комбинированные.
Дисциплиной обслуживания с явными потерями называется такая, при которой поступающий на коммутационную систему вызов, получая отказ в обслуживании, покидает систему и в дальнейшем не оказывает на систему никакого влияния. При такой дисциплине обслуживания абонент, получив сигнал “занято”, отказывается от дальнейших попыток установить соединение.
Дисциплиной обслуживания с условными потерями называется такая, при которой поступающий на коммутационную систему в момент отсутствия соединительных путей вызов не теряется, а обслуживается с ожиданием (дисциплина обслуживания с ожиданием). Если вызов обслуживается после многократных повторений попыток установить соединение, то имеет место дисциплина обслуживания с повторением.
Структура коммутационной системы характеризуется большим числом параметров: числом звеньев, числом, емкостью и способами связи коммутаторов и так далее. Наиболее удобной функцией распределения длительности обслуживания с точки зрения аналитического описания и анализа пропускной способности коммутационных систем является показательное распределение, так как оно не обладает последействием.
где β =1/М(t) – параметр длительности обслуживания;
М(t) – математическое ожидание длительности обслуживания.
Одной из важнейших характеристик коммутационных систем является их эффективность. В качестве показателей эффективности наряду с экономическими (капитальными затратами, эксплуатационными расходами) широко используется и такой технический показатель, как пропускная способность.
Под способностью пропускной коммутационной системы понимается интенсивность обслуженной коммутационной системой нагрузки при заданном качестве обслуживания. Пропускная способность коммутационной системы зависит от величины потерь, емкости пучков линий, включенных в выходы коммутационной системы, от способа (схемы) объединения этих выходов, класса потока вызовов, структуры коммутационной системы. Распределения длительности обслуживания и дисциплины обслуживания.
Если в выражения для потерь по вызовам, нагрузке и времени подставить математические ожидания соответствующих случайных величин, то можно говорить о вероятности потерь по вызовам, нагрузке и времени. Тогда формула для расчета р в будет иметь вид:
где λ – интенсивность потока вызовов; υ – количество каналов;
Формула 3.6 называется распределением Эрланга. Она показывает, что вероятность р i зависит только от числа занятых линий i, емкости пучка υ и величины параметра потока вызовов λ. По этим соображениям вероятность р i принято обозначать Е i,υ (λ), ΰ вероятность р υ – через Е υ,υ (λ) θли Е υ (λ).
Р в = р t = р υ = Е υ (λ).
При выводе формулы средняя длительность занятия принята равной единице; отсюда и параметр длительности занятий при показательном законе распределения β = 1. В общем случае при измерении длительности занятий в любых единицах времени (β 1) распределение Эрланга имеет следующий вид:
В частности, вероятность того, что в полнодоступном пучке заняты все υ линий (i = υ), πавна
где y – интенсивность поступающей нагрузки
μ – θнтенсивность потока вызовов; – средняя длительность занятия.
Для простейшего потока, который является ординарным и стационарным, μ = λ. огда распределение Эрланга имеет вид:
При распределение Эрланга преобразуется в распределение Пуассона:
Выражение (3.6.6) называется второй формулой Эрланга. Формула табулирована. Таблицы позволяют по любым двум из трех параметров y, υ, p t – определить третий.
Потери измеряются в процентах или в промилле [0.1%].
На ГТС между двумя ТА на одной ГТС р ≤ 0.03; на ЗТС между двумя ТА разных местных сетей одной зоны р ≤ 0.03 – 0,13; на МТС между двумя ТА разных зон семизначной нумерации р ≤ 0.1.
Если потери меньше 10 %, то абоненты на них не реагируют.
Основная задача инженерных расчетов – установление оптимального количества обслуживающих приборов при заданной интенсивности нагрузки и качестве обслуживания:
3.7 Принципы построения систем коммутации
Точка коммутации – группа коммутационных элементов, осуществляющих коммутацию одновременно при подаче одного управляющего сигнала.
Звено коммутации – группа коммутаторов, обеспечивающих одну и ту же функцию в коммутационной станции
Коммутационный блок – часть ступени искания, представляющая собой совокупность точек коммутации, обслуживающих определенную группу входов
Ступень искания – часть коммутационной станции, реализующая один вид искания
Коммутационное поле (КП) – совокупность коммутационных приборов всех ступеней искания станции
Коммутационная станция – совокупность технических средств, обеспечивающая коммутацию абонентских и соединительных линий и каналов при осуществлении оконечных и транзитных соединений во вторичной сети связи.
Пространственная коммутация. В пространственных КП коммутируемые цепи разделены в пространстве. Простейшим коммутационным устройством КП является коммутатор (рисунок 3.12) – это коммутационная схема с n входами и m выходами.
Рисунок 3.12 – Схема коммутатора n×m и его символическое изображение.
Если к входам и выходам одного квадратного коммутатора N×N подключить абонентские линии одной АТС, то количество необходимых КЭ Q = N 2 – N = N(N – 1), так как КЭ по диагонали слева направо не нужны. Стоимость такого КП будет велика. Использование многозвенных структур, в которых коммутаторы соединены каскадно, позволяет построить КП с существенно меньшим количеством КЭ при заданном количестве абонентов станции и с приемлемыми потерями. Схема такого КП показана на рисунке 3.13.
Рисунок 3.13– Трёхступенчатая (трёхзвенная) коммутационная схема.
Каждая ступень коммутации связана с совокупностью соединительных путей (звеньев). Общее число КЭ в этой схеме существенно меньше, чем в схеме квадратного коммутатора с N-входами и N-выходами:
Q = 2nm (N/n) + m (N/n) 2 = 2Nm + m (N/n) 2
Коммутационные поля современных ЦСК относятся к КП блокирующего типа, однако в них число звеньев и параметры коммутаторов выбирают такими, чтобы вероятность блокировки была очень мала (не больше 0,1%) [1].
Трёхзвенная схема может быть и не блокирующей, если будет выполнено условие: m = 2n – 1. Использование неблокирующих схем в ЦСК большого объёма неэффективно, так как требует значительно большего количества КЭ, чем в блокирующих, при прочих равных условиях.
Пример КП с пространственно-временной коммутацией показан на рисунке 3.15. В ней на первой ступени и третьей ступенях используется временная, а на второй – пространственная коммутация.
Рисунок 3.15 – Схема трёхзвенного КП типа В – П – В.
Тип коммутации, приведённой на схеме, называют время – пространство – время (В – П – В). Как и на рисунке 3.13, здесь число входящих и исходящих каналов равно N. Эти каналы представлены в N/n входящих и исходящих линиях ИКМ. Работа такой коммутационной схемы аналогична работе трёхзвенной пространственной коммутационной (смотри рисунок 3.13). В пространственных коммутаторах второй ступени устанавливаются соединения временных каналов исходящих и входящих линий ИКМ [1].
Это значит, что КЭ, разделённые в пространстве и установленные на пресечении вертикали с горизонталью, должны открываться в выбранном свободном временном положении коммутации, которое выбирается управляющим устройством. Оно же обеспечивает считывание кода данных из требуемой ячейки (например, второй) информационной памяти входящей линии ИКМ (например, первой) в ячейку (например, n) информационной памяти некоторой исходящей линии ИКМ (например, N/n-й).
Контрольные вопросы по разделу 3:
6. Системы передачи
Главная > Документ
Информация о документе | |
Дата добавления: | |
Размер: | |
Доступные форматы для скачивания: |
6.1.4. Обеспечение дальности связи
Рис. 6.17. Структурная схема построения систем передачи
В отличие от аналоговых систем во временных (цифровых) системах на обслуживаемых и необслуживаемых пунктах устанавливается аппаратура для восстановления ( регенерации ) импульсных сигналов линейного тракта. Отсюда обслуживаемые и необслуживаемые пункты в этих системах принято называть регенерационными (ОРП, НРП).
Аппаратура ОУП и НУП служит не только для усиления аналогового сигнала, но и для коррекции (выравнивания) амплитудно-частотных и фазочастотных характеристик линейного тракта. Аппаратура НРП и ОРП предназначена для восстановления амплитуды, длительности и временного интервала между импульсами сигнала цифровых систем.
Расстояние между НУП (НРП) меняется в широких пределах для различных систем передачи и может составлять от единиц до десятков (иногда сотни) километров. Как правило НУП (НРП) представляет собой металлическую камеру, имеющую подземную и наземную части. В камере размещаются вводно-коммутационное и усилительное (регенерационное) оборудование. Аппаратура ОП и ОУП (ОРП) размещается в зданиях, где постоянно находится технический персонал для ее обслуживания.
6.2. Аналоговые системы передачи
6.2.1. Двусторонняя передача сигналов
Рис. 6.19. Канал двустороннего действия
Рис. 6.20. Схема трансформаторной ДС
В случае сбалансированной ДС мощность входных сигналов, подводимых к зажимам 1-1 и зажимам 4-4, передается на соответствующие выходные зажимы 2-2 и 1-1 не полностью, а лишь частично, и входные сигналы испытывают так называемые рабочие затухания ДС а 4-1 = а 1-2 = 10lg2 = 3дБ. В реальных ДС за счет неидеальности трансформатора рабочие затухания несколько больше.
Переходное затухание реальной ДС также является конечной величиной. Оно зависит, в основном, от точности равенства входного сопротивления абонентской линии и балансного сопротивления. Точно выполнить это равенство на практике не представляется возможным, поскольку к одной и той же ДС могут подключаться абонентские линии с существенно различающимися характеристиками. В то же время характеристики балансного сопротивления являются постоянной величиной. Балансное сопротивление (балансный контур) обычно выполняется в виде последовательно включенных резистора сопротивлением 600 Ом и конденсатора емкостью 1 мкФ. Поэтому величина переходного затухания реальных ДС обычно не превышает 20..40 дБ.
6.2.2. Каналы связи
Нормированные (номинальные) измерительные уровни в стандартных точках канала ТЧ составляют (Рис. 6.21): на входе канала 0 дБм, на выходе транзитного удлинителя минус 3,5 дБм, на входе четырехпроводного тракта минус 13 дБм, на выходе четырехпроводного тракта 4,3 дБм, на входе транзитного удлинителя минус 3,5 дБм и на выходе канала минус 7 дБ.
Рис. 6.21. Номинальные измерительные уровни канала
Рис. 6.22. Шаблон отклонения остаточного затухания аналогового канала ТЧ
Фазочастотные искажения не являются столь существенным при передаче речи. Но так как каналы ТЧ используются также для передачи данных и факсимильной связи, большие фазочастотные искажения недопустимы. Поэтому нормируется отклонение группового времени передачи (ГВП) от его значении на частоте 1900 Гц на одном транзитном участке длиной 2500 км (Рис. 6.23).
Рис. 6.23. Допустимые отклонения ГВП канала ТЧ
Коэффициент нелинейных искажений канала ТЧ на одном транзитном участке не должен превышать 1,5% (1% по третьей гармонике) при номинальном уровне передачи тока частотой 800 Гц. Амплитудная характеристика при этом нормируется следующим образом: остаточное затухание канала на одном транзитном участке должно оставаться постоянным с точностью 0,3 дБ при изменении уровня измерительного сигнала от минус 17,5 дБ до плюс 3,5 дБ в точке с нулевым измерительным уровнем на любой частоте пределах 0,3. 3,4 кГц. При повышении уровня измерительного сигнала до 8,7 и 20 дБ остаточное затухание должно уменьшиться не менее чем на 1,75 и 7,8 дБ соответственно.
Помехи в каналах ТЧ. На выходе канала ТЧ кроме информационного сигнала присутствуют помехи, которые определяются на приемном конце в точке с относительным уровнем минус 7 дБ. Средняя величина псофометрического (взвешенного) напряжения помех в канале в течение любого часа на одном переприемном участке длиной 2500 км не должна превышать 1,1 мВ псоф (10000 пВт псоф в точке относительного нулевого уровня).
Стандартные каналы ТЧ, организованные с помощью цифровых и оптических систем передачи, являются более высококачественными. Поэтому ряд характеристик цифровых каналов ТЧ имеют следующие отличия.
Нормы на амплитудно-частотные искажения заданы МСЭ-Т в виде шаблона (Рис. 6.24). Если сравнить допустимые отклонения остаточных затуханий цифровых и аналоговых каналов ТЧ (см. Рис. 6.22), можно отметить, что нормы для цифровых каналов более жесткие. То же можно сказать и о фазочастотных искажениях (Рис. 6.25).
Рис. 6.24. Шаблон отклонений остаточного затухания цифрового канала ТЧ
Рис. 6.25. Шаблон на допустимую неравномерность ГВП цифрового канала ТЧ
Рис. 6.26. Зависимость отношения сигнал/шум квантования от уровня сигнала
В настоящее время аналоговые системы передачи предусматривают образование следующих широкополосных каналов:
предгруппового канала с полосой частот 12..24 кГц взамен трех каналов ТЧ;
первичного канала 60..108 кГц взамен 12 каналов ТЧ;
вторичного канала 312..552 кГц взамен 60 каналов ТЧ;
третичного канала 812..2044 кГц взамен 300 каналов ТЧ.
Кроме перечисленных каналов в системах передачи формируются каналы вещания и телевидения (со звуковым вещанием).
6.2.3. Формирование стандартных групповых сигналов
При многократном преобразовании (Рис. 6.27) сигнал проходит последовательно через несколько преобразователей частоты (ПЧ) с различными несущими частотами. Абсолютная ширина полосы расфильтровки на выходе каждого последующего ПЧ больше, чем на выходе предыдущего, что позволяет увеличивать значение несущих частот без уменьшения относительной ширины полосы расфильтровки.
Рис. 6.27. Многократное преобразование частоты
Рис. 6.28. Групповое преобразование частоты
Таким образом, применение многократного и группового преобразования позволяет унифицировать фильтровое оборудование системы, т.е. уменьшить его разнотипность. Такая унификация повышает технологичность изготовления узлов аппаратуры и, в конечном счете, удешевляет ее.
Кроме того, применение группового преобразования и стандартизации методов формирования групп каналов позволяет унифицировать часть оборудования различных систем. По этой причине МСЭ-Т были стандартизированы следующие основные группы каналов.