Для чего вводится физическая величина количество теплоты
Глоссарий. Физика
Количество теплоты — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин. Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.
Внутренняя энергия тела может изменяться за счет работы внешних сил. Для характеристики изменения внутренней энергии при теплообмене вводится величина, называемая количеством теплоты и обозначаемая Q. В международной системе единицей количества теплоты, также как работы и энергии, является джоуль: [Q] = [A] = [E] = 1 Дж. На практике еще иногда применяется внесистемная единица количества теплоты – калория. 1 кал. = 4,2 Дж.
Количество теплоты, передаваемое от одного тела к другому, может идти на нагревание тела, плавление, парообразование, либо выделяться при противоположных процессах – остывании тела, кристаллизации, конденсации. Теплота выделяется при сгорании топлива. Между массой вещества и количеством теплоты, необходимым для его нагревания, существует прямая пропорциональная зависимость.
Удельная теплоемкость вещества показывает, чему равно количество теплоты, необходимое для нагревания или выделяющееся при охлаждении 1 кг вещества на 1 К.
Удельные теплоты парообразования, плавления, сгорания показывают, какое количество теплоты требуется для парообразования, плавления или выделяется при конденсации, кристаллизации, сгорании 1 кг вещества.
Количество теплоты. Удельная теплоёмкость
Урок 5. Физика 8 класс (ФГОС)
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Количество теплоты. Удельная теплоёмкость»
Нам с вами уже известно любое тело обладает внутренней энергией, которая представляет собой сумму кинетической энергии теплового движения частиц тела, и потенциальной энергии их взаимодействия друг с другом.
А изменить внутреннюю энергию тела можно двумя способами — это путём совершения механической работы и теплопередачей.
Мы знаем, что мерой изменения внутренней энергии при совершении работы является величина этой работы. Тогда возникает логичный вопрос: а с помощью какой величины можно охарактеризовать изменение внутренней энергии тела при теплопередаче?
Такой величиной является количество теплоты.
Количество теплоты — это скалярная физическая величина, которая равна изменению внутренней энергии тела в процессе теплопередачи без совершения механической работы.
Обозначается количество теплоты буквой «Q». А единицей её измерения в СИ является Дж.
Наверняка вы слышали и о такой единице измерения теплоты, как калория или килокалория. Откуда же она взялась? Всё дело в том, что измерять количество теплоты учёные начали давно, ещё за долго до введения понятия энергии. Поэтому практически все учёные восемнадцатого и первой половины девятнадцатого века рассматривали теплоту не как изменение внутренней энергии тела, а как особое вещество — теплород. Теплородом называлась особая жидкость, которая, по их мнению, могла перетекать от одного тела к другому. Так, например, считалось, что если происходит нагревание тела, то теплород в него вливается. Если же тело охлаждалось — то, наоборот, считали, что теплород выливается из тела.
При этом, по их мнению, теплород обладал объёмом, так как при увеличении температуры, тела расширяются. Однако в данной теории был и существенный недостаток: если теплород — это вещество, то тела при нагревании должны бы увеличиваться в массе. Однако многочисленные опыты показывали, что масса тела при нагреваниях не изменялась. Тогда теплород стали считать невесомой жидкостью.
Теорию теплорода поддерживали многие учёные того времени, кроме Дж. Джоуля, который, на основании проведённых серии экспериментов, пришёл к выводу о том, что такого вещества, как теплород, не существует. И что теплота — это мера изменения кинетической энергии движущихся частиц тела и потенциальной энергии их взаимодействия друг с другом. Однако введённая на основании теории теплорода единица количества теплоты — калория, дожила и до наших дней.
1 кал — это количество теплоты, которое необходимо затратить, чтобы нагреть 1 г воды на 1 о С.
Давайте с вами выясним, от чего же зависит количество теплоты? Ответим на этот вопрос, проведя серию небольших экспериментов.
Для начала, возьмём два одинаковых сосуда. В один из них нальём 200 г воды, а в другой 500 г. И удостоверимся в том, что в обоих сосудах начальная температура воды равная. Поместим под сосуды две абсолютно одинаковые спиртовки и зажжём их.
По истечении нескольких минут мы заметим, что вода в первом сосуде нагреется на большее число градусов, чем во втором, хотя оба сосуда получили одно и тоже количество теплоты.
Таким образом, чем больше масса тела, тем большее количество теплоты требуется к нему подвести для нагревания на одно и тоже число градусов.
Соответственно, если тело охлаждается, то оно будет отдавать тем больше теплоты, чем больше его масса. Конечно же речь идёт о телах из одного и того же вещества, и нагреваются они или остывают на одно и то же число градусов.
Значит, количество теплоты, которое необходимо затратить на нагревание тела, прямо пропорционально массе этого тела.
Внесём некоторые изменения в опыт. Будем нагревать на одинаковых спиртовках в одном сосуде 200 г воды от 20 о С до 50 о С. А в другом, таком же сосуде, — 200 г воды от 20 о С до 80 о С. По секундомеру будем следить за временем нагревания воды в обоих сосудах.
На нагревание воды на 30 о С уходит почти в 2 раза меньше времени, чем на нагревание такой же массы воды на 60 о С. Значит, количество теплоты, которое тратится на нагревание воды на 30 о С, меньше, чем то, которое нам необходимо затратить для нагревания той же массы воды, но на 60 о С.
Таким образом, можем сделать вывод о том, что количество теплоты прямо пропорционально изменению температуры тела.
Но только ли от массы и разности температур зависит количество теплоты? И вновь вернёмся к опыту. Опять берём два одинаковых сосуда. Но теперь, в один из них нальём, например, 500 г воды, а во второй — такое же количество растительного или подсолнечного масла. И вновь будем нагревать их на одинаковых спиртовках.
Через некоторое время измерим температуры жидкостей в обоих сосудах. Заметим, что, получив за одинаковый промежуток времени от нагревателя равное с водой количество теплоты, масло нагрелось сильнее.
Следовательно, чтобы температура жидкостей в обоих сосудах была равной, воде нужно передать больше теплоты, чем маслу. Значит, количество теплоты, которое необходимо затратить для увеличения температуры тела, зависит от рода вещества, из которого это тело сделано.
Эта зависимость характеризуется величиной, которая называется удельной теплоёмкостью вещества.
Удельная теплоёмкость вещества — это физическая скалярная величина, равная количеству теплоты, которое нужно сообщить телу массой 1 кг для его нагревания на 1 о С.
Следует помнить о том, что такое же количество теплоты отдаёт тело массой 1 кг при своём охлаждении на 1 о С.
Удельная теплоёмкость обозначается буквой «c». Из определения следует, что единицей удельной теплоёмкости является .
Значения удельной теплоёмкости веществ определяют экспериментально.
Как видно из таблицы, жидкости имеют большую удельную теплоёмкость, чем металлы. Самую большую удельную теплоёмкость, из приведённых в таблице веществ, имеет вода: на нагревание 1 кг воды на 1 о С необходимо затратить 4200 Дж теплоты.
Таким образом, количество теплоты, которое затрачивается на нагревание тела зависит от трёх факторов: массы тела, рода вещества, из которого изготовлено тело, и разности температур в конечном и начальном состояниях:
Эта же формула позволит рассчитать количество теплоты, которое выделяет тело при охлаждении. Но так как конечная температура остывшего тела меньше его начальной температуры, то выделяемое телом количество теплоты будет выражается отрицательным числом. Знак «−» будет указывать нам на то, что внутренняя энергия тела уменьшается.
При теплообмене двух или нескольких тел абсолютное значение количества теплоты, которое отдало более нагретое тело, равно количеству теплоты, которое было получено телом, более холодным:
Это равенство называется уравнением теплового баланса и выражает закон сохранения энергии. Оно справедливо при отсутствии потерь теплоты.
Для чего вводится физическая величина количество теплоты
Количество теплоты – это физическая величина, показывающая, какая энергия передана телу в результате теплообмена.
В международной системе единицей количества теплоты, также как работы и энергии, является джоуль:
На практике еще иногда применяется внесистемная единица количества теплоты – калория.
Количество теплоты, передаваемое от одного тела к другому, может идти на нагревание тела, плавление, парообразование, либо выделяться при противоположных процессах – остывании тела, кристаллизации, конденсации. Теплота выделяется при сгорании топлива.
Рассмотрим более подробно процессы, которые могут протекать в результате теплообмена.
Нальем в пробирку немного воды и закроем ее пробкой. Подвесим пробирку к стержню, закрепленному в штативе, и подведем под нее открытое пламя. От пламени пробирка получает некоторое количество теплоты и температура жидкости, находящейся в ней, повышается. При повышении температуры внутренняя энергия жидкости увеличивается. Происходит интенсивный процесс ее парообразования. Расширяющиеся пары жидкости совершают механическую работу по выталкиванию пробки из пробирки.
Проведем еще один опыт с моделью пушки, изготовленной из отрезка латунной трубки, которая укреплена на тележке. С одной стороны трубка плотно закрыта эбонитовой пробкой, сквозь которую пропущена шпилька. К шпильке и трубке припаяны провода, оканчивающиеся клеммами, на которые может подаваться напряжение от осветительной сети. Модель пушки, таким образом, представляет собой разновидность электрического кипятильника.
Пушка, вследствие отдачи, откатывается в сторону, противоположную вылету пробки.
Оба опыта объединяют следующие обстоятельства. В процессе нагревания жидкости различными способами, температура жидкости и, соответственно, ее внутренняя энергия увеличивались. Для того, чтобы жидкость кипела и интенсивно испарялась, необходимо было продолжать ее нагревание.
Пары жидкости за счет своей внутренней энергии совершили механическую работу.
Исследуем зависимость количества теплоты, необходимой для нагревания тела, от его массы, изменения температуры и рода вещества. Для исследования данных зависимостей будем использовать воду и масло. (Для измерения температуры в опыте применяется электрический термометр, изготовленный из термопары, подключенной к зеркальному гальванометру. Один спай термопары опущен в сосуд с холодной водой для обеспечения постоянства его температуры. Другой спай термопары измеряет температуру исследуемой жидкости).
Опыт состоит из трех серий. В первой серии исследуется для постоянной массы конкретной жидкости (в нашем случае – воды) зависимость количества теплоты, необходимого для ее нагревания, от изменения температуры. О количестве теплоты, полученной жидкостью от нагревателя (электрической плитки), будем судить по времени нагревания, предполагая, что между ними существует прямо пропорциональная зависимость. Чтобы результат эксперимента соответствовал этому предположению, необходимо обеспечить стационарный поток тепла от электроплитки к нагреваемому телу. Для этого электроплитка была включена в сеть заранее, так чтобы к началу опыта температура ее поверхности перестала изменяться. Для более равномерного нагрева жидкости во время опыта, будем помешивать ее при помощи самой термопары. Будем фиксировать показания термометра через равные промежутки времени до тех пор, пока световой зайчик не дойдет до края шкалы.
Сделаем вывод: между количеством теплоты, необходимым для нагревания тела и изменением его температуры, существует прямая пропорциональная зависимость.
Во второй серии опытов будем сравнивать количества теплоты, необходимые для нагревания одинаковых жидкостей разной массы при изменении их температуры на одну и ту же величину.
Для удобства сравнения получаемых величин массу воды для второго опыта возьмем в два раза меньше, чем в первом опыте.
Вновь будем фиксировать показания термометра через равные промежутки времени.
Сравнивая результаты первого и второго опытов можно сделать следующие выводы.
Между массой вещества и количеством теплоты, необходимым для его нагревания, существует прямая пропорциональная зависимость.
В третьей серии опытов будем сравнивать количества теплоты, необходимые для нагревания равных масс различных жидкостей, при изменении их температуры на одну и ту же величину.
Будем нагревать на электроплитке масло, масса которого равна массе воды в первом опыте. Будем фиксировать показания термометра через равные промежутки времени.
Результат опыта подтверждает вывод о том, что количество теплоты, необходимое для нагревания тела, прямо пропорционально изменению его температуры и, кроме того, свидетельствует о зависимости этого количества теплоты от рода вещества.
Поскольку в опыте использовалось масло, плотность которого меньше плотности воды и для нагревания масла до некоторой температуры потребовалось меньшее количество теплоты, чем для нагревания воды, можно предположить, что количество теплоты, необходимое для нагревания тела, зависит от его плотности.
Чтобы проверить это предположение, будем одновременно нагревать на нагревателе постоянной мощности одинаковые массы воды, парафина и меди.
Через одно и то же время температура меди оказывается примерно в 10 раз, а парафина примерно в 2 раза выше температуры воды.
Но медь имеет большую, а парафин меньшую плотность, чем вода.
Для сравнения удельных теплоемкостей различных веществ служит специальный прибор. Прибор состоит из стоек, в которых крепится тонкая парафиновая пластинка и планка с пропущенными сквозь нее стержнями. На концах стержней укреплены алюминиевый, стальной и латунный цилиндры равной массы.
Нагреем цилиндры до одинаковой температуры, погрузив их в сосуд с водой, стоящий на горячей электроплитке. Закрепим горячие цилиндры на стойках и освободим их от крепления. Цилиндры одновременно прикасаются к парафиновой пластине и, плавя парафин, начинают погружаться в нее. Глубина погружения цилиндров одинаковой массы в парафиновую пластину, при изменении их температуры на одну и ту же величину, оказывается разной.
Опыт свидетельствует о том, что удельные теплоемкости алюминия, стали и латуни различны.
Проделав соответствующие опыты с плавлением твердых тел, парообразованием жидкостей, сгоранием топлива получаем следующие количественные зависимости.
Количество теплоты, необходимое для нагревания тела или выделяющееся при его охлаждении, прямо пропорционально массе тела и изменению его температуры.
Количество теплоты, необходимое для превращения жидкости в пар или выделяющееся при его конденсации, прямо пропорционально массе жидкости.
Количество теплоты, необходимое для плавления тела или выделяющееся при его кристаллизации, прямо пропорционально массе этого тела.
Количество теплоты, выделяющееся при сгорании топлива, прямо пропорционально его массе.
Удельная теплоемкость вещества показывает, чему равно количество теплоты, необходимое для нагревания или выделяющееся при охлаждении 1 кг вещества на 1 К.
Удельные теплоты парообразования, плавления, сгорания показывают, какое количество теплоты требуется для парообразования, плавления или выделяется при конденсации, кристаллизации, сгорании 1 кг вещества.
Чтобы получить единицы удельных величин, их надо выразить из соответствующих формул и в полученные выражения подставить единицы теплоты – 1 Дж, массы – 1 кг, а для удельной теплоемкости – и 1 К.
Получаем единицы: удельной теплоемкости – 1 Дж/кг·К, остальных удельных теплот: 1 Дж/кг.
Содержание:
Количество теплоты:
В чём причина изменения внутренней энергии макроскопического тела при теплообмене?
Теплообмен
Другим способом изменения внутренней энергии термодинамической системы является теплообмен.
Теплообмен — самопроизвольный процесс передачи внутренней энергии от тела с большей температурой телу с меньшей температурой без совершения работы.
Теплообмен между контактирующими телами называют теплопередачей. За счёт переданной при этом энергии увеличивается внутренняя энергия одного тела и уменьшается внутренняя энергия другого. Если, например, привести в соприкосновение два тела с разными температурами, то частицы более нагретого тела будут передавать часть своей кинетической энергии частицам менее нагретого тела. В результате внутренняя энергия одного тела уменьшается, а другого увеличивается.
Таким образом, при теплопередаче не происходит превращения энергии из одной формы в другую: часть внутренней энергии более нагретого тела передаётся менее нагретому.
Количество теплоты и удельная теплоёмкость
Количественной мерой энергии, сообщённой телу (или отданной им) в процессе теплообмена, является количество теплоты.
В СИ единицей количества теплоты Q является джоуль (Дж). Иногда для измерения количества теплоты используют внесистемную единицу — калорию
Если процесс теплообмена не сопровождается изменением агрегатного состояния вещества, то
где — масса тела;
— разность температур в конце и в начале процесса теплообмена; с — удельная теплоёмкость вещества — физическая величина, численно равная количеству теплоты, которое получает вещество массой 1 кг при увеличении его температуры на 1 К. Удельную теплоёмкость измеряют в джоулях, деленных на килограмм, кельвин
Удельная теплоёмкость зависит от свойств данного вещества и, как показывает опыт, в достаточно большом интервале температур практически не изменяется. Однако удельная теплоёмкость газа зависит от того, при каком процессе (изобарном или изохорном) осуществляется теплообмен.
Интересно знать:
Физическая величина, равная произведению массы тела на удельную теплоёмкость вещества, носит название теплоёмкость тела. Обозначают теплоёмкость С и измеряют в джоулях, деленных на кельвин Теплоёмкость в отличии от удельной теплоёмкости, является тепловой характеристикой тела, а не вещества.
Удельная теплота плавления
Физическую величину, численно равную количеству теплоты, необходимому для превращения кристаллического вещества массой 1 кг, взятого при температуре плавления, в жидкость той же температуры, называют удельной теплотой плавления Эту величину измеряют в джоулях, делённых на килограмм
Для плавления тела массой
предварительно нагретого до температуры плавления, ему необходимо сообщить количество теплоты
При кристаллизации тела такое же количество теплоты выделяется:
Удельная теплота парообразования
Физическую величину, численно равную количеству теплоты, которое необходимо передать жидкости массой 1 кг, находящейся при температуре кипения, для превращения её при постоянной температуре в пар, называют удельной теплотой парообразования L. Единицей измерения этой величины является джоуль, делённый на килограмм Количество теплоты, необходимое для превращения жидкости массой
предварительно нагретой до температуры кипения, в пар, определяют по формуле
Конденсация пара сопровождается выделением количества теплоты
Удельная теплота сгорания топлива
Физическую величину, численно равную количеству теплоты, выделяющемуся при полном сгорании топлива массой 1 кг, называют удельной теплотой сгорания топлива и измеряют в джоулях, делённых на килограмм
Количество теплоты, выделившееся при полном сгорании некоторой массы
топлива, определяют по формуле
Это количество теплоты передаётся телам, образующим термодинамическую систему, и по отношению к ним является положительной величиной.
Примеры решения задач
Пример №1
На рисунке 77 представлен график зависимости абсолютной температуры нагреваемого тела от переданного ему количества теплоты. Воспользовавшись таблицей на с. 84, определите вещество, из которого изготовлено тело, если его масса
Решение:
Для того чтобы определить вещество, из которого изготовлено тело, найдём его удельную теплоёмкость с. Анализируя график, делаем вывод, что при нагревании тела от температуры до температуры
ему было передано количество теплоты
которое можно рассчитать по формуле
Следовательно, удельная теплоёмкость вещества
Полученное значение удельной теплоёмкости соответствует олову.
Ответ: — олово.
Пример №2
В налитую в сосуд воду, масса которой и температура
добавили некоторое количество льда при температуре
Определите массу льда, если после достижения теплового равновесия температура содержимого сосуда
Теплоёмкостью сосуда и потерями тепла пренебречь. Удельная теплоёмкость воды
льда
удельная теплота плавления льда
Решение:
Пренебрегая потерями энергии в окружающую среду, учитываем только обмен энергией между входящими в систему телами. Рассмотрим тепловые процессы, происходившие в системе:
1) нагревание льда от температуры до температуры плавления
2) таяние льда:
3) нагревание воды, появившейся при таянии льда, от температуры до температуры
4) остывание тёплой воды массой от температуры
до температуры
Составим уравнение теплового баланса:
или
Откуда масса льда:
Ответ:
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.