Доказать что множества равны
Введение в теорию множеств
Концепция бесконечности идеологически далека от обычной математической терминологии — ни одна другая тема не выходит за пределы математики так, что превращается из практического, аналитического инструмента в явление мифического порядка. Понятие бесконечности на короткой ноге с такими культурными темами, как религия и философия, и окутана загадочной аурой божественности.
Когда-то давным давно во всех академических дисциплинах было заложено фундаментальное убеждение — существует единственная бесконечность.
Но 1874 году довольно малоизвестный математик провёл серию революционных наблюдений, подвергавших сомнению это всеми принятое и глубоко укоренившееся убеждение. Георг Кантор в своей (теперь уже ставшей легендарной) публикации On a Property of the Collection of All Real Algebraic Numbers доказал, что множество вещественных чисел «более многочисленно», чем множество алгебраических чисел. Так он впервые показал, что существуют бесконечные множества разных размеров (не волнуйтесь — для прояснения этого мы вскоре подробно изучим его статью).
«Множество — это большое количество, которое позволяет воспринимать себя как одно» — Георг Кантор
С 1874 по 1897 год Кантор неистово публиковал статью за статьёй, разворачивая свою теорию абстрактных множеств в расцветающую дисциплину. Однако она была встречена упорным сопротивлением и критикой; многие педанты считали, что его теории перешли в область философии и нарушили принцип религии.
Однако когда начали находиться практические применения математического анализа, отношение к теории изменилось, а идеи и результаты Кантора начали получать признание. К первому десятилению 20-го века его наблюдения, теории и публикации достигли своей кульминации — признания современной теории множеств новой, совершенно уникальной областью математики:
Теория множеств — это математическая теория о точно определённых наборах (множествах) отдельных объектов, называемых членами или элементами множества.
Сколько чисел есть между 0 и 1?
Первая публикация Кантора, состоящая из четырёх с половиной страниц, является великолепным примером краткости. Она разделена на два отдельных доказательства, совместно приводящих к выводу о существовании по крайней мере двух уникальных видов множеств.
В первой части теории исследуется множество вещественных алгебраических чисел и доказывается, что это бесконечное счётное множество. Здесь не стоит путать — «счётное» не обязательно значит, что счёт ведётся строго в целых числах; в контексте теории множеств «счётное» означает, что множество, пусть даже состоящее из бесконечного числа элементов, можно описать повторяющимся рядом, например упорядоченной многочленной функцией. Кантор назвал это свойство бесконечного набора чисел соответствия «один к одному» с рядом, наличием взаимно однозначного соответствия.
Если говорить вкратце, то набор, или множество всех вещественных алгебраических чисел можно вывести с помощью какого-то теоретического ряда многочленов с различными степенями и коэффициентами; следовательно, множество всех вещественных алгебраических чисел является бесконечным счётным множеством.
Во второй части труда Кантора анализируется роль вещественных комплексных чисел, также называющихся трансцендентными числами. Транцендентные числа (лучшие примеры которых — это пи и e) имеют любопытное свойство: математически невозможно вывести их с помощью многочленной функции — они не являются алгебраическими. Вне зависимости от величин, количества частей, степеней или коэффициентов, никакой ряд никогда не может посчитать пи в своём наборе бесконечного счётного множества.
Затем Кантор указывает, что в любом замкнутом интервале [a,b] существует хотя бы одно транцендентное число, которое никогда нельзя будет подсчитать в бесконечном счётном множестве. Поскольку одно такое число существует, то предполагается, что в семействе вещественных чисел существует бесконечное количество транцендентных чисел.
Таким образом он доказал очень чёткое различие между множеством непрерывных, идущих потоком несчётных чисел и набора счётных чисел, которые можно представить как ряд, например, всех вещественных алгебраических чисел.
Далее: запись и операции
Первая публикация Кантора завершилась на этом потрясающем подтверждении существования по крайней мере двух разных видов бесконечности. После его первой статьи появился шквал дополнений, медленно, но верно прокладывавших путь к современной теории множеств.
Стоит также поделиться интересным наблюдением: большинство людей, использующих теорию множеств на практике, ценят скорее не эту конкретную теорему, а заданный ею обобщённый язык. Благодаря своей абстрактной природе теория множеств скрытно влияет на множество областей математики. В математическом анализе, который требует дифференциального и интегрального исчисления, необходимо понимание пределов и непрерывности функций, окончательно закреплённых в теории множеств. В алгебре логики логические операции «и», «или» и «не» соответствуют операциям пересечения, объединения и разности в теории множеств. И последнее, но не менее важное — теория множеств закладывает основы топологии — исследования геометрических свойств и пространственных отношений.
Вооружившись базовым пониманием истории множеств и совершив кратковременное погружение в глубины его влияния, мы можем приступать к знакомству с основами системы обозначений теории множеств.
Часть вторая. Краткий обзор операций, обозначений и диаграмм Венна.
Как сказано в предыдущей части, одно из фундаментальных преимуществ теории множеств произрастает не из какой-то конкретной теории, а из созданного ею языка. Именно поэтому основная часть этого раздела будет посвящена обозначениям, операциям и визуальному представлению теории множеств. Давайте начнём с объяснения базовых символов обозначения множества — соответствующих ему элементов. В таблице ниже показан пример одного множества A с тремя элементами:
A — это множество с элементами «1», «2» и «3»
«1» — элемент множества A
В первой строке показано множество A с тремя отдельными элементами (A = ); во второй строке показан правильный способ обозначения отдельного конкретного элемента 1, принадлежащего множеству A. Пока всё довольно просто, но теория множеств становится существенно интереснее, когда мы добавляем второе множество — начинается путешествие по стандартным операциям.
Операции: пересечение (intersection) — множество элементов, принадлежащих множеству A и множеству B;
объединение (union) — множество элементов, принадлежащих множеству A или множеству B;
подмножество (subset) — C является подмножеством A, множество C включено во множество A;
собственное (истинное) подмножество — C является подмножеством A, но C не равно A;
относительное дополнение (relative complement) — множество элементов, принадлежащих к A и не к B.
Вот и они, самые распространённые операции в теории множеств; они довольно популярны и в областях за пределами чистой математики. На самом деле, высока вероятность того, что вы уже видели подобные типы операций в прошлом, хоть и не совсем с такой терминологией, и даже пользовались ими. Хорошая иллюстрация: попросите любого студента описать диаграмму Венна из двух пересекающихся групп, и он интуитивно придёт к правильному результату.
Ещё раз взгляните на последнюю строку, относительное дополнение — какое необычное сочетание слов, правда? Относительное к чему? Если относительное дополнение A — B определяется как A и не B, то как нам обозначить всё, что не является B?
Универсальное множество — пустое множество
Оказывается, если мы хотим получить значимый ответ, то для начала нужно предоставить генеральной совокупности нашей задачи множеств некий контекст. Он часто явным образом задаётся в начале задачи, когда допустимые элементы множества ограничиваются некоторым фиксированным классом объектов, в котором существует универсальное множество, являющееся общим множеством, содержащим все элементы для этой конкретной задачи. Например, если мы хотели бы работать со множествами только из букв английского алфавита, то наше универсальное множество U состояло бы из 26 букв алфавита.
Для любого подмножества A множества U дополнение множества A (обозначаемое A′ или U − A) определяется как множество всех элементов в генеральной совокупности U, которое не находится в A. Если вернуться к поставленному выше вопросу, то дополнением множества B является всё в пределах универсального множества, что не принадлежит B, в том числе и A.
Прежде чем мы двинемся дальше, надо упомянуть ещё одно принципиальное множество, которое достаточно важно для базового понимания: нулевое или пустое множество. Учтите, что существует единственное пустое множество, поэтому никогда не говорят «пустые множества». Хотя мы не будем рассматривать в этой статье эквивалентность, основная теория гласит, что два множества эквивалентны, если они имеют одинаковые элементы; следовательно, может быть только одно множество без элементов. Поэтому существует единственное пустое множество.
Диаграммы Венна и остальное
Диаграммы Венна, официально изобретённые в 1880 году Джоном Венном, являются именно тем, что вы и представляете, хотя их научное определение звучит примерно так:
Схематичное изображение всех возможных отношений нескольких множеств
Ниже показано изображение шести самых распространённых диаграмм Венна, и почти во всех показаны недавно изученные нами операнды:
Объединение (union), пересечение (intersection), относительное дополнение (relative complement), симметрическая разность (symmetric difference), собственное множество (proper subset), абсолютное дополнение (universal дополнение).
Начав с очень простых обозначений множества и его элементов, мы узнали затем о базовых операциях, позволивших нарисовать эту визуальную подсказку. Мы рассмотрели все операции, за исключением симметрической разности (внизу слева). Чтобы не оставлять пробелов в знаниях, скажем, что симметрическая разность, также называемая дизъюнктивным объединением — это просто множество элементов, которые находятся в любом из множеств, но не входят в их пересечение.
Закончим мы этот раздел введением понятия мощности (кардинального числа). Мощность множества, обозначаемая символом абсолютного значения — это просто количество уникальных элементов, содержащихся в определённом множестве. Для показанного выше примера мощность трёх множеств равна: |A| = 3, |B| =6, |C| = 2.
Прежде чем двигаться дальше, дам вам пищу для размышлений — какова связь между мощностью и количеством возможных подмножеств?
Часть 3. Мощность и показательные множества
В предыдущих двух частях мы разобрались с основами теории множеств. В третьей части мы укрепим своё понимание, сосредоточившись на самом важном свойстве любого множества: общем количестве содержащихся в нём уникальных элементов.
Количество уникальных элементов во множестве, также известное как мощность, предоставляет нам фундаментальную опорную точку для дальнейшего, более глубокого анализа этого множества. Во-первых, мощность — это первое из рассматриваемых нами уникальных свойств, позволяющее нам объективно сравнивать различные виды множеств, проверяя, существует ли биекция (это, с небольшими оговорками, просто более изысканный термин для function ) одного множества на другое. Ещё один способ применения мощности, а также тема этой части статьи — мощность позволяет оценить все возможные подмножества, существующие в данном множестве. Что достаточно буквально можно применять в повседневных задачах распределения решений, будь то планирование бюджета на поездку в продуктовый магазин или оптимизация портфеля акций.
Примеры мощности множеств
Например, в таблице выше показаны пять отдельных множеств с их указанной справа мощностью. Как мы уже говорили, символ мощности напоминает символ абсолютного значения — значение, заключённое между двумя вертикальными линиями. Все примеры понятны, за исключением, возможно, последней строки, которая подчёркивает тот факт, что на мощность влияют только уникальные элементы множества.
Помните подмножества из предыдущей части статьи? Оказывается, что мощность некоторого множества A и количество возможных подмножеств множества A имеют удивительную связь. Ниже показано, что количество подмножеств, которые можно составить из некоторого подмножества, увеличивается с порядком мощности на предсказуемую величину:
Количество возможных подмножеств в C= 2 |C|
Давайте подробно рассмотрим показанный ниже пример. Однако для начала поразмыслим над формулой. Представим мощность как общее количество «позиций», которое представляет множество. При создании некоторого подмножества для каждой возможной позиции принимается булево решение (да/нет). Это означает, что каждый уникальный элемент, добавляемый к множеству (то есть увеличивающий мощность на единицу) увеличивает количество возможных подмножеств на множитель два. Если вы программист или учёный, то можете уяснить эту логику немного глубже, если поймёте, что все подмножества множества можно вычислить с помощью таблицы двоичных чисел.
Показательное множество (булеан)
Прежде чем мы вычислим все подмножества для примера множества C, я хотел бы ввести последнее понятие — булеан.
Булеан обозначается заглавной буквой S, за которой в скобках указывается исходное множество S(С). Булеан — это множество всех подмножеств C, включая пустое множество и само множество C. В таблице ниже показан булеан S(С) со всеми перестановками возможных подмножеств для множества C, содержащихся в одном большом множестве.
Для удобства форматирования я убрал запятые между множествами***
Чем может быть полезен булеан? На самом деле, вы скорее всего много раз интуитивно использовали булеаны, даже об этом не догадываясь. Каждый раз, когда вы выбираете подмножество элементов из более крупного множества, вы выбираете элемент булеана. Например ребёнок внимательно изучающий кондитерский магазин с купюрой в 5 долларов — какой элемент булеана множества всех доступных сладостей он выберет? Или если взять более технический пример: вам, как разработчику ПО может потребоваться запросить всех возможных пользователей базы данных, также обладающих свойством X и Y — ещё один случай, в котором одно подмножество выбирается из всех возможных подмножеств.
Эквивалентность и биективная функция
Теперь мы понимаем, что такое мощность множества, почему оно важно, и его связь с булеаном. Поэтому вернёмся ненадолго к тому, что упоминали в самом начале: что конкретно определяет эквивалентность в теории множеств?
Очевидно, что два множества с одинаковой мощностью имеют некое общее свойство, но на этом сходства заканчиваются — что если в одном из множеств есть многократно повторяющийся элемент? Что если два множества имеют одинаковую мощность и количество элементов? Нельзя отрицать, что они в какой-то степени «эквивалентны», но даже в этом случае всё равно есть возможность различий, потому что каждое множество может иметь разные элементы, повторяющиеся одинаковое количество раз. Смысл здесь в том, что концепция эквивалентности в теории множеств немного чужда другим областям математики. Установление эквивалентности в этом мире требует знакомства с этой концепцией и нового языка. В последней части этой статьи мы введём понятие эквивалентности, а также таких базисных свойств, как инъективные, биективные и сюръективные функции.
Часть 4. Функции.
В этой части мы подробнее расскажем о функциях в пределах теории множеств. Как и в случае с предыдущими понятиями, терминология стандартных функций в теории множеств слегка отличается от других областей математики, а потому требует объяснения. Терминологии довольно много, так что давайте сразу приступим к делу! В первой таблице внизу отражены понятия области определения, области значений и значения функции:
Функция в мире теории множеств — это просто соответствие некоторых (или всех) элементов из Множества A некоторым (или всем) элементам Множества B. В показанном выше примере набор всех возможных элементов A называется областью определения; элементы A, используемые в качестве входных значений, в частности называются аргументами. Справа набор всех возможных выходных значений (называющихся в других областях математики «областью значений»), называется кообластью; набор настоящих выходных элементов B, соответствующих A, называется образом.
Пока особо ничего сложного, только новый способ задания параметров функций. Далее мы расскажем о том, как описывать поведения этих функций соответствия при помощи обычных типов функций.
Инъекции, сюръекции и биекции
В теории множеств для классификации соответствия множеств обычно используются три понятия: инъекция, сюръекция и биекция. К сожалению, эти понятия имеют несколько разных названий, усиливающих неразбериху, поэтому мы сначала рассмотрим каждое определение, а затем изучим визуальные примеры. Все три термина описывают способ, которым отображаются аргументы на образы:
Прочитайте заново представленный выше список пунктов. Биекция — это просто функция, удовлетворяющая обоим предыдущим требованиям; то есть, функция инъективна и сюръективна. Инъективная функция не должна быть сюръективной, а сюръективная — инъективной. Ниже показан визуальный пример, в котором эти три классификации привели к созданию функций множеств, определяемых четырьмя возможными комбинациями инъективных и сюръективных свойств:
Биекция (инъекция + сюръекция), инъекция (инъекция + не-сюръекция), сюръекция (не-инъекция + сюръеция), без классификации (не-инъекция + не-сюръекция)
Вот и всё! Теперь мы обладаем элементарным пониманием самых часто встречаемых соотношений, встречающихся в мире множеств. Однако это ни в коем случае не конец нашего пути: напротив, это самое начало.
Фундаментальные основы теории множеств — ключ к пониманию более высокоуровневых областей математики. Чтобы продолжить наше движение вверх, к этим различным областям, далее нужно будет, пользуясь своими знаниями о теории множеств, уяснить одну из самых революционных теорий в истории математики: систему аксиом Цермело-Френкеля.
Равенство множеств. Подмножество. Универсальное множество. Дополнение множества
В обычной речи мы часто употребляем слово “множество”: множество людей, множество книг, множество законов, множество денег и т.д.
В математике множеством называют совокупность, набор каких-либо предметов (объектов). Это не есть точное математическое определение. Так же, как и понятия точки, числа и т.д., понятие множества является одним из тех первоначальных, наиболее общих понятий, которые приходится принимать без определения.
Примерами пустых множеств могут служить:
а) множество действительных чисел, являющихся корнями уравнения x 2 + 1 = 0;
б) множество треугольников, сумма углов которых отлична от 180°;
в) множество решений системы уравнений
.
В каком случае можно считать, что множество задано? Иногда можно задать множество, перечислив все его элементы. Например, множество учеников в классе задается перечислением фамилий в классном журнале. Это нетрудно сделать, так как такое множество содержит конечное число элементов. Однако не всякое конечное множество можно задать перечислением. Множества слонов на нашей планете или рыб в океане тоже конечные, но попробуйте их перечислить
(или пересчитать!)! Тем более нельзя перечислить все элементы бесконечного множества. Так, множество всех цифр конечное и их легко перечислить: А=<0,1,2,3,4,5,6,7,8,9>. А вот множество всех целых чисел, составленных из этих цифр, бесконечное и их уже не перечислишь. В таких случаях множество считается заданным, если указано некоторое свойство, которым обладают все его элементы и не обладают никакие другие объекты. Такое свойство называется характерис-тическим свойством множества. Одно и то же множество может быть задано различными характеристическими свойствами. Например, множество <2,4>может быть задано как:
а) множество четных чисел, удовлетворяющих неравенству 1
1.2. Равенство множеств. Подмножество. Универсальное множество. Дополнение множества
Приведем примеры подмножеств:
а) множество учеников 10-го класса данной школы есть подмножество множества всех учеников этой школы;
б) множество жителей Москвы является подмножеством множества жителей России;
в) множество всех квадратов есть подмножество множества всех прямоугольников;
г) множество Z всех целых чисел есть подмножество множества Q всех рациональных чисел.
Если одновременно с отношением А В имеет место отношение В А, то А=В. То есть, если одновременно А есть подмножество В и В есть подмножество А, то такие два множества равны.
Отношение А В изображено с помощью диаграмм на рис. 2 а, б.
1.3. Операции над множествами: объединение, пересечение, разность
в) Обозначим через А множество целых чисел, через В множество четных чисел. Тогда А В есть множество А, то есть А В=А.
Примеры. а) Термин “пересечение” по существу геометрического происхождения. Пересечением прямой и плоскости, если прямая не параллельна плоскости, является их единственная общая точка. Если прямая и плоскость параллельны, то пересечение этих множеств пусто. Если же прямая лежит на плоскости, то их пересечение совпадает с множеством точек этой прямой.
Множество делителей числа 72 конечно. А множество кратных этого числа бесконечно: С=<72,144,216. 72n. >.
Бесконечно и множество кратных числа 54: D=<54,108,162,216. 54m. >.
Пересечением этих множеств является множество общих кратных для чисел 72 и 54: С D=<216,432. >.
Наименьшее число в С D, то есть 216, называется наименьшим общим кратным для 72 и 54.
Рис. 8 Рис. 9 Рис. 10
в) Разностью множества четных чисел и множества целых чисел является пустое множество.
1.4. Основные законы операций над множествами
Некоторые свойства объединения и пересечения множеств очень похожи на свойства хорошо известных алгебраических операций сложения и умножения. Вместе с тем многие свойства введенных операций над множествами отличаются от свойств алгебраических операций. Приведем здесь основные свойства:
Здесь роль пустого множества аналогична роли числа 0 в алгебре. Однако свойство \А= уже не имеет аналога в алгебре.
Первый распределительный закон аналогичен соответствующему распределительному закону в алгебре. А вот второй закон никакого аналога в алгебре не имеет.
Свойства, сформулированные в п.п.1-4, очевидны и не нуждаются в доказательстве. Распределительные законы в п.5 уже сложнее. Однако вместо того, чтобы их строго доказывать, лучше попытаться их понять, пользуясь диаграммами Венна.
1.5. Числовые множества. Множества точек на прямой,
задаваемые алгебраическими уравнениями и неравенствами
а) множество всех действительных чисел R;
б) множество всех рациональных чисел Q;
в) множество всех натуральных чисел N;
г) множество всех чисел вида , где n принимает все натуральные значения.
Заштрихованная часть числовой прямой содержит все точки, принадлежащие соответст-вующему интервалу. Незакрашенные кружочки означают, что эти точки не принадлежат интервалу, а закрашенные, наоборот, означают, что эти точки принадлежат интервалу.
2. Окрестность точки. Окрестностью точки x 0 называется любой открытый интервал, содержащий эту точку (рис. 15). Открытый интервал (a,b) служит окрестностью всякой принад-лежащей ему точки.
Пример 1. Уравнение имеет своей областью определения множество [-4,+ ). Найдем его корни. Возведем обе части уравнения в квадрат:
x + 4 = (2 – x ) 2 или x 2 – 5 x = 0.
Решим полученное квадратное уравнение:
x ( x – 5) = 0 или x 1 = 0, x 2 = 5.
Оба числа x 1 = 0 и x 2 = 5 принадлежат множеству [-4,+ ), однако число x 2 = 5 является посторонним корнем уравнения (это показывает простая проверка: ). Таким образом множество корней данного уравнения <0> [-4,+ ). На прямой эти множества изображаются так:
.
Поэтому данное уравнение можно представить в виде совокупности двух уравнений: х = 3 и
–х = 3. Откуда получим два корня x 1 = 3, x 2 = –3. Геометрически эти решения можно истолковать так: расстояние от x 1 до начала отсчета О и расстояние x 2 до начала отсчета О равны 3 (рис. 17).
Пример 3. Неравенство | x | x |
4. Системы уравнений и неравенств с одним неизвестным.
Пример 5. Решить систему уравнений
.
или x 1 = 3, x 2 = –1.
При решении второго уравнения надо указать вначале его область определения: x 3. Далее, приравняв каждый из множителей нулю и решив получившиеся уравнения, будем иметь x 1 = 3,
x 2 = –2. Число x 2 = –2 не принадлежит области определения [3,+ ) и является посторонним корнем. Следовательно, система уравнений имеет единственное решение: <3>.
Пример 6. Решить систему неравенств:
.
x 2 – 5 x – 6 = ( x + 1) ( x – 6).
Пересечением множеств является множество точек, на котором штриховки накладываются друг на друга.
Учитывая рассмотренные примеры 5 и 6, можно сделать один вывод. Множество решений системы уравнений или неравенств представляет собой пересечение множеств решений каждого из уравнений или неравенств, входящих в эту систему.
Иногда в процессе решения системы уравнений или неравенств получается некоторая совокупность других систем, к которым приводится данная система. В таких случаях множество решений исходной системы является объединением множеств решений каждой системы, входящей в эту совокупность. Разберем один пример.
Пример 7. Решить систему неравенств
.
Решение. Раскрывая модуль в первом неравенстве системы, получим два случая: 1) при
и 2)
при x – 6
1) или 2)
Найдем пересечение первого и второго множества:
Используя распределительный закон пересечения относительно объединения (см. §4), будем иметь
Множество решений исходной системы является объединением множеств (9,12] и [4,5), то есть [4,5) (9,12].
1.6. Множества точек на плоскости, задаваемые уравнениями
и неравенствами с двумя переменными
Множества точек на плоскости можно задавать их характеристическими свойствами. В разд. 1.2 мы уже познакомились с такими примерами. Кроме такого способа задания их часто задают соотношениями между координатами точек в виде уравнений или неравенств.
Аналогично неравенство y > ax 2 + bx + c задает множество точек, лежащих по одну сторону от параболы (рис. 25 и 26), а неравенство y ax 2 + bx + c задает множество точек, лежащих по другую сторону (рис. 27 и 28).
Когда имеется система уравнений или неравенств с двумя переменными, то множество решений такой системы представляет собой пересечение множеств решений каждого уравнения или неравенства, входящего в систему.
Пример. Построить множество точек, удовлетворяющих следующим соотношениям:
б) .
Решение. В случае а) соотношения равносильны следующей системе
.
Рис. 29 Рис. 30 Рис. 31
Рис. 32 Рис. 33 Рис. 34
1.7. Отображение множеств. Взаимно-однозначное
соответствие между множествами. Понятие числовой функции
1. Рассмотрим два множества А и В. Если каждому элементу а множества А некоторым способом поставлен в соответствие один элемент b множества В, то говорят, что задано отображение множества А в множество В. Записывают это так: f:A B или b=f(a). Через f обозначают то отображение (правило), по которому это соответствие устанавливается. С помощью диаграмм Венна это изображается так:
Если же каждый элемент множества В соответствует какому-либо элементу множества А,
то говорят, что множество А отображается на множество В (рис. 36).
В примере 1 так будет, если все стулья окажутся занятыми (то есть количество учеников и количество стульев одинаковое).
Между множествами А и В установлено взаимно-однозначное соответствие (взаимно-однозначное отображение), если каждому элементу а из А поставлен в соответствие один элемент b из B, и при этом соответствии каждый элемент b из В соответствует одному и только одному элементу а из А. С помощью диаграмм взаимно-однозначное соответствие изображено на рис. 36.
В примере 2 отображение f:A С никогда не будет взаимно-однозначным, так как, вообще говоря, количество учеников в классе всегда меньше количества букв и, кроме того, ни одна фамилия не начинается с буквы “й” или “ь”.
Приведем теперь примеры взаимно-однозначного соответствия бесконечных множеств. Одним, наиболее хорошо всем знакомым, является взаимно-однозначное соответствие между множеством всех действительных чисел R и множеством точек на прямой (числовая прямая). Разберем и другой пример. Выберем на плоскости систему координат и поставим в соответствие каждой окружности вписанный в нее квадрат, стороны которого параллельны осям координат. Мы получим взаимно-однозначное соответствие между множеством всех окружностей и множеством всех квадратов, стороны которых параллельны осям координат. Другое взаимно-однозначное соответствие между этими множествами получается, если сопоставить каждой окружности описанный вокруг нее квадрат, стороны которого параллельны осям координат.
Далее рассмотрим множество А всех точек на плоскости и множество В всех окружностей на этой плоскости, имеющие заданный радиус R. Если поставить в соответствие каждой точке а окружность радиуса R с центром в этой точке, то получим взаимно-однозначное соответствие между множествами А и В.
Функцию можно задавать разными способами. Одним из способов является табличный. Например, таблица
.
1.8. Эквивалентные множества. Счетные и несчетные множества. Мощность множества.
1. Два множества называют эквивалентными, если между ними можно установить взаимно-однозначное соответствие. Проще всего проверить эквивалентность конечных множеств. Для двух конечных множеств взаимно-однозначное соответствие можно установить лишь в случае, когда они имеют одинаковое количество элементов. Поэтому конечные множества эквивалентны тогда и только тогда, когда они имеют поровну элементов. Для бесконечных множеств не имеет смысла говорить о числе элементов. Однако и среди бесконечных множеств можно найти эквивалентные.
2. Рассмотрим множество всех натуральных чисел N=<1,2,3,4. >. Любое бесконечное подмножество А множества N эквивалентно самому множеству N. В самом деле, элементы этого подмножества можно расположить в порядке возрастания и каждому поставить в соответствие его порядковый номер (перенумеровать). Получим Так как элементов в подмножестве А бесконечно много, этот процесс можно неограниченно продолжать. Тем самым устанавливается взаимно-однозначное соответствие между А и N. Нетрудно догадаться, что множество А представляет собой числовую последовательность. Таким образом, все числовые последовательности, содержащие различные элементы, эквивалентны множеству натуральных чисел N.
Рассмотрим теперь множество Z всех целых чисел:
Бесконечные множества, эквивалентные множеству натуральных чисел, называются счетными множествами. Иными словами, если элементы бесконечного множества можно перенумеровать, то такое множество называется счетным. Самым простым примером счетного множества является само множество N натуральных чисел. Более сложные примеры счетных множеств мы рассмотрели выше.
Теперь сформулируем основные теоремы о счетных множествах.
Теорема 1. Каждое бесконечное подмножество А счетного множества В счетно.
Теорема 2. Объединение конечного или счетного множества счетных множеств счетно.
Доказывать эти теоремы мы не будем, хотя отметим, что доказательство теоремы 1 почти ничем не отличается от приведенного выше рассуждения, когда доказывалась эквивалентность между множеством N и его подмножеством А.
3. До сих пор мы рассматривали лишь такие бесконечные множества, которые являются счетными. Однако не все бесконечные множества счетные, существуют и такие, элементы которых нельзя перенумеровать. Простейшим примером такого множества является множество всех точек конечного интервала, например, интервала (0,1). Ясно, что в этом множестве содержится счетное подмножество. В качестве такого подмножества можно указать, например, числовую последовательность . Но оказывается, что точек в интервале (0,1) “намного” больше, чем точек этой последовательности. Точнее говоря, множество точек интервала (0,1) несчетно, то есть нельзя установить взаимно-однозначного соответствия между множеством точек интервала (0,1) и множеством натуральных чисел N. Доказательство этого утверждения мы проводить не будем. Легко сообразить, что любой другой интервал длины 1 на числовой прямой эквивалентен интервалу (0,1). Вообще, произвольный интервал (a,b) конечной длины эквивалентен интервалу (0,1). Взаимно-однозначное соответствие между ними можно установить так, как показано на рис. 38.
Точно так же любой отрезок (замкнутый интервал) эквивалентен отрезку [0,1] (рис. 39).
Это утверждение означает, что квадрат содержит “столько же” точек, что и отрезок, хотя на первый взгляд кажется, что в нем должно быть “гораздо больше” точек. Доказательство этой теоремы мы приводить не будем. Кстати сказать, множества точек плоскости и пространства тоже имеют мощность континуума.