Доказать что прямые скрещиваются координатным методом
Метод координат
Для решения задачи по стереометрии координатным методом нужно выбрать декартову систему координат. Ее можно выбрать как угодно, главное, чтобы она была удобной. Приведем примеры выбора системы координат в кубе, пирамиде и конусе:
Далее необходимо найти координаты основных точек в выбранной системе координат. Это могут быть вершины объемной фигуры, середины ребер или любые другие точки, указанные в условии задачи. Найдем координаты куба и правильной пирамиды (предположим, что все ребра равны \(4\)):
С кубом все просто, но в других фигурах могут возникнуть трудности с нахождением координат.
Координату \(x\) точки \(С\) можно получить, опустив перпендикуляр \(CE\) из \(т.С\) на ось \(OX\). (см. Рис. 2). Получится \(т.E\), указывающая на искомую координату по \(x\) – 2.
Координаты вектора
Вектор – отрезок, имеющий длину и указывающий направление.
На самом деле, понимать, что такое вектор для решения задач методом координат необязательно. Можно просто использовать это понятие, как необходимый инструмент для решения задач по стереометрии. Любое ребро или отрезок на нашей фигуре мы будем называть вектором.
Скрещивающиеся прямые
Уравнение плоскости
Если найти \(A,B,C,D\), то мы мы найдем уравнений плоскости. Плоскость однозначно задается тремя точками в пространстве, значит нужно найти координаты трех точек, лежащий в данной плоскости, а потом подставить их в общее уравнение плоскости.
Например, пусть даны три точки:
Подставим координаты точек в общее уравнение плоскости:
$$\begin
Получилась система из трех уравнений, но неизвестных 4: \(A,B,C,D\). Если наша плоскость не проходит через начало координат, то мы можем \(D\) приравнять \(1\), если же проходит, то \(D=0\). Объяснение этому простое: вы можете поделить каждое ваше уравнения на \(D\), от этого уравнение не изменится, но вместо \(D\) будет стоять \(1\), а остальные коэффициенты будут в \(D\) раз меньше.
Теперь у нас есть три уравнения и три неизвестные – можем решить систему:
Расстояние от точки до плоскости
Расстояние между скрещивающимися прямыми
Расстояние между скрещивающимися прямыми – это расстояние от любой точки одной из прямых до параллельной ей плоскости, проходящей через вторую прямую.
Таким образом, если требуется найти расстояние между скрещивающимися прямыми, то нужно через одну из них провести плоскость параллельно второй прямой. Затем найти уравнение этой плоскости и по формуле расстояния от точки до плоскости найти расстояние между скрещивающимися прямыми. Точку на прямой можно выбрать произвольно (у которой легче всего найти координаты).
Рассмотрим задачу из досрочного ЕГЭ по математике 2018 года.
Решим задачу полностью методом координат.
Нарисуем рисунок и выберем декартову систему координат. (Рис 5).
Расстояние между скрещивающимися прямыми: формула
Вы будете перенаправлены на Автор24
Скрещивающиеся прямые — это прямые, не лежащие в одной плоскости и не пересекающиеся между собой.
Наименьшим расстоянием между двумя скрещивающимися прямыми является перпендикуляр, опущенный с одной прямой на другую. У каждой пары скрещивающихся прямых при этом есть только один такой общий перпендикуляр.
Рисунок 1. Кратчайшее расстояние между скрещивающимися прямыми. Автор24 — интернет-биржа студенческих работ
Через каждую из скрещивающихся прямых возможно провести лишь одну плоскость, параллельную второй скрещивающейся прямой, соответственно, для определения расстояния между скрещивающимися прямыми, достаточно определить расстояние между одной из скрещивающихся прямых и плоскостью, на которой лежит вторая прямая.
Соответственно, задачу поиска расстояния между прямой и параллельной ей плоскостью можно свести к поиску расстояния между любой точкой, лежащей на вышеозначенной прямой, и плоскостью.
Как найти расстояние между скрещивающимися прямыми: координатный метод
Готовые работы на аналогичную тему
$A (x-x_2) + B (y – y_2) + C(z- z_2) + D=0$.
Данная формула позволяет высчитать расстояние между двумя скрещивающимися прямыми.
$-2 \cdot (x+1) + (y-0) – 1 \cdot(z-1)=0$
Упрощаем и в конечном итоге имеем следующее уравнение плоскости:
Координатная формула вычисления расстояния между скрещивающимися прямыми
Также аналогичное уравнение для поиска расстояния между скрещивающимися прямыми можно использовать сразу в полной координатной форме:
$ρ=\frac<\begin
Для того чтобы воспользоваться данной формулой, возможно нужно освежить в памяти способы нахождения определителей матриц.
Выпишем сначала точки, принадлежащие данным прямым и их направляющие векторы:
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 06 03 2021
Геометрия. 11 класс
Конспект урока
Геометрия, 11 класс
Урок № 3. Координатный метод решения задач
Перечень вопросов, рассматриваемых в теме:
Уравнение вида задает в пространстве плоскость α.
При этом вектор – это вектор, перпендикулярный плоскости α. Его называют вектор нормали, или нормальный вектор, или нормаль. Очевидно, что нормалью является любой вектор, коллинеарный вектору
.
Вектор и любой коллинеарный ему вектор называются направляющим векторами прямой
и прямой
соответственно.
Шарыгин И.Ф. Геометрия. 10–11 кл. : учеб. для общеобразоват. Учреждений – М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 163-170.
Потоскуев Е.В., Звавич Л. И. Геометрия. 11кл.: учеб. Для классов с углубл. И профильным изучением математики общеобразоват. Учреждений – М.: Дрофа, 2004. – 368 с.: ил., ISBN 5–7107–8310–2, сс. 353-260.
Открытые электронные ресурсы:
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/
Теоретический материал для самостоятельного изучения
Работа по теме урока. Объяснение новой темы
Мы рассмотрели несложную задачу на применение метода координат в пространстве.
Векторы , угол между которыми мы искали, называются направляющими векторами прямой
и прямой
соответственно.
Рассмотрим этот метод более подробно.
Суть метода координат на плоскости и в пространстве заключается в следующем.
В рассмотренном нами примере, поскольку был дан куб, мы могли ввести систему координат с центром в любой его вершине.
В координатах удобно решать задачи, связанные с поиском расстояний и углов. Но для того чтобы его использовать, нужно знать некоторые формулы:
Расстояние между параллельными плоскостями определяется как расстояние от точки, лежащей в одной плоскости, до другой плоскости.
Мы рассмотрим только первые четыре формулы.
Угол между прямыми
Если прямая задана двумя точками A и B, то известен направляющий вектор этой прямой с координатами <
>. Пусть вторая прямая имеет направляющий вектор
. Тогда угол между векторами вычисляется по формуле:
.
Дальше ищется арккосинус от найденного числа. Заметим, что если косинус получился отрицательным, то это значит, что угол между векторами тупой. Поэтому мы берем модуль получившегося числа.
Фактически мы уже рассмотрели пример вычисления угла между прямыми в пространстве.
Угол между прямой и плоскостью
Сначала рассмотрим уравнение плоскости, проходящей через три точки.
.
Вам известно, что в пространстве плоскость задается уравнением, аналогичным тому, которое на плоскости задает прямую.
Если линейное уравнение вида на плоскости задает прямую l, то уравнение вида
задает в пространстве плоскость α. При этом вектор
– это вектор, перпендикулярный плоскости α. Его называют вектор нормали, или нормальный вектор, или нормаль.
Вам известно, что три точки в пространстве определяют единственную плоскость. Поэтому, если заданы три точки, то мы можем найти уравнение плоскости
Мы можем подставить координаты заданных точек в уравнение плоскости и решить систему из трех уравнений с тремя переменными:
В этой системе четыре неизвестных, однако, мы можем избавиться от одной, если разделим все уравнения на D:
.
Для изучения данного способа в 11 классе на базовом уровне введение понятий матрица, определитель матрицы не желателен, данные понятия не входят в базовый курс изучения геометрии.
Иногда эта система оказывается несложной. Но иногда бывает трудно ее решить, и тогда можно использовать следующую формулу:
Обозначение |M| означает определитель матрицы М.
В нашем случае матрица представляет собой таблицу 3х3 элемента. И определитель |M| вычисляется следующим образом:
.
Таким образом, уравнение плоскости будет записано так:
.
Решая ее, получим значения А, В и С: . То есть уравнение плоскости имеет вид:
.
Ответ: .
Теперь запишем формулу угла между прямой и плоскостью.
Пусть дано уравнение плоскости: и известен
— направляющий вектор прямой.
Тогда – синус угла между прямой и плоскостью.
Найдем угол между прямой и плоскостью. В качестве плоскости возьмем ту, уравнение которой мы только что написали:
Направляющий вектор прямой: .
Найдем синус угла между прямой и плоскостью:
.
Угол между прямой и плоскостью .
Ответ: .
Угол между плоскостями
уравнение первой плоскости:
уравнение второй плоскости:
Тогда — косинус угла между этими плоскостями.
Найдем угол между плоскостями:
и
.
Найдем косинус угла между плоскостями:
.
Угол между плоскостями:
Ответ:
Расстояние от точки до плоскости
Пусть координаты точки: , уравнение плоскости:
.
Тогда Расстояние от точки до плоскости вычисляется по формуле: .
Найдем расстояние от точки М(4; 3; 4) до плоскости .
.
Теперь рассмотрим решение задачи координатным методом с использованием рассмотренных формул.
АВС…D1 – куб с ребром 4. Найти расстояние от точки А до плоскости ЕКС (Е – середина D1C1, K – середина C1B1)
Введем систему координат с началом в вершине А так, как показано на рисунке:
Интересующие нас точки будут иметь координаты:
A(0; 0; 0), C(4; 4; 0), E(4; 2; 4), K(2; 4; 4).
Напишем уравнение плоскости ЕКС:
.
Решая ее, получим значения А, В, С и D: .
Уравнение плоскости имеет вид:
Теперь найдем расстояние от точки А до плоскости ЕКС: .
Ответ: .
Рассмотрим задачу (№14 из варианта ЕГЭ).
В кубе ABC…D1 все рёбра равны 4. На его ребре BB1 отмечена точка K так, что KB = 3. Через точки K и C1 построена плоскость α, параллельная прямой BD1.
а) Докажите, что A1P : PB1 = 2 : 1, где P — точка пересечения плоскости α с ребром A1B1.
б) Найдите угол наклона плоскости α к плоскости грани BB1C1C.
Переформулируем первый пункт этой задачи таким образом:
Проведем плоскость через точки Р, K и C1 и докажем, что она параллельна прямой BD1.
Введем систему координат так, как показано на рисунке:
Найдем координаты точек :
Р(; 0; 4), К(4; 0; 3),
(4; 4; 4).
Напишем уравнение плоскости :
;
Решая ее, получим значения А, В, С и D: .
— уравнение плоскости
Теперь докажем, что плоскость параллельна прямой BD1.
Найдем угол между прямой BD1 и плоскостью .
Точки В и D1 имеют координаты: В (4; 0; 0), D1 (0; 4; 4).
Направляющий вектор прямой BD1 – это вектор .
Он имеет координаты .
Теперь найдем синус угла между вектором и плоскостью
.
.
В этом случае нам не нужно считать знаменатель дроби. Так как числитель получился равен 0, то дробь равна 0, то есть синус угла между плоскостью и прямой равен 0, значит, плоскости параллельны или совпадают. Но, так как точка В, например, в плоскости, очевидно, не лежит, то плоскости параллельны.
Это значит, что плоскость, параллельная прямой BD1 и проходящая через точки действительно пересекает ребро A1B1в точке Р так, что A1P : PB1 = 2 : 1. Что и требовалось доказать.
Теперь рассмотри второй пункт задачи. Уравнение плоскости у нас есть. Плоскость BB1C1 параллельна координатной плоскости YOZ и проходит через точку
В(4; 0; 0). Поэтому она имеет уравнение .
То есть ее коэффициенты .
Найдем угол между плоскостями, используя формулу
Ответ: .