Доказать что сумма трех последовательных натуральных чисел делится на 9

Доказать что сумма трех последовательных натуральных чисел делится на 9

При решении задач этого занятия вам пригодятся следующие признаки делимости:

Натуральное число делится на 3 тогда и только тогда, когда его сумма цифр делится на 3.
Натуральное число делится на 9 тогда и только тогда, когда его сумма цифр делится на 9.
Натуральное число делится на 2 тогда и только тогда, когда его последняя цифра чётна.
Натуральное число делится на 5 тогда и только тогда, когда его последняя цифра равна 0 или 5.
Натуральное число делится на 4 тогда и только тогда, когда число, образованное его двумя последними цифрами (в том же порядке), делится на 4.
Натуральное число делится на 8 тогда и только тогда, когда число, образованное его тремя последними цифрами (в том же порядке), делится на 8.

1. Вовочка написал в тетради число 65349*0712 в качестве примера числа, которое делится: а) на 9; б) на 3. (На месте звёздочки когда-то была написана цифра, а теперь там пятно от сладкого чая.) Помогите Вовочке восстановить пропущенную цифру. Укажите все возможные варианты!

Сумма известных цифр числа равна 37.

a) Чтобы число делилось на 9, нужно, чтобы его сумма цифр делилась на 9. Это возможно, только если на месте звёздочки стоит цифра 8.

б) Чтобы число делилось на 3, нужно, чтобы его сумма цифр делилась на 3. Это возможно, только если на месте звездочки стоит одна из цифр 2, 5, 8.

а) Число оканчивается на 98, а 98 не делится на 4. Поэтому по признаку делимости на 4 число на делится на 4. Но любое число, делящееся на 12, должно делиться и на 4.

б) Сумма цифр числа равна 40, а 40 не делится на 3. Поэтому по признаку делимости на 3 число на делится на 3. Но любое число, делящееся на 12, должно делиться и на 3.

У Тани есть следующая выигрышная стратегия: после очередного хода Даши она должна дописать к числу такую цифру, чтобы в результате сумма цифр числа делилась на 3. Это всегда можно сделать (более того, для этого Тане достаточно использовать цифры 0, 1 и 2). Тогда после каждого хода Тани (в том числе после последнего) написанное на доске число будет делиться на 3, и Таня выиграет.

Упражнение. Попробуйте доказать, что Тане для выигрыша достаточно правильно сделать последний ход (независимо от её предыдущих ходов).

В силу признака делимости на 4 код может оканчиваться только цифрами 32 (другие двузначные числа, составленные из цифр 2 и 3, не делятся на 4).

Двоек в коде больше, чем троек; значит, двоек не меньше четырёх, а троек не больше трёх. Если в коде четыре двойки и три тройки, то сумма цифр кода равна 2 · 4 + 3 · 3 = 17 и не делится на 3, поэтому и сам код не делится на 3. По аналогичной причине код не может состоять из пяти двоек и двух троек (тогда сумма цифр была бы равна 2 · 5 + 3 · 2 = 16). Значит, код может состоять только из одной тройки и шести двоек (тогда сумма цифр равна 2 · 6 + 3 · 1 = 15 и код делится на 3).

Положение единственной тройки в коде мы уже определили, а остальные цифры · двойки. Значит, подходит только код 2222232.

Число делится на 45 тогда и только тогда, когда оно делится на 5 и на 9 (докажите это с помощью основной теоремы арифметики). Чтобы число делилось на 5, последняя цифра должна быть равна 0 или 5.

Пусть последняя цифра числа равна 0, тогда сумма известных нам цифр числа равна 7 + 2 + 4 + 0 = 13. Чтобы число делилось также и на 9, нужно дополнить сумму цифр до числа, кратного 9. Это удастся сделать, только если взять в качестве третьей цифры числа цифру 5. Этот случай даёт нам число 72540.

Пусть теперь последняя цифра числа равна 5, тогда сумма известных нам цифр числа равна 7 + 2 + 4 + 5 = 18 и уже делится на 9. Чтобы число делилось также и на 9, нужно, чтобы после дописывания ещё одной цифры сумма цифр числа по-прежнему была кратна 9. Это условие будет выполнено, только если взять в качестве третьей цифры числа цифру 0 или цифру 9. Таким образом, этот случай даёт нам ещё два числа: 72045 и 72945.

а) Из двух последовательных чётных чисел одно к тому же обязательно делится на 4 (докажите это аккуратно, пользуясь признаком делимости на 4), поэтому их произведение делится на 8.

б) Среди четырёх последовательных натуральных чисел всегда будут два последовательных чётных числа, так что их произведение должно делиться на 8 по пункту а. А число 116 не делится на 8. Значит, оно не может быть образовано тремя последними цифрами числа, делящегося на 8.

Достаточно доказать, что среди любых 7 различных цифр найдутся две, из которых можно составить число, кратное 4. Тогда это число можно будет поставить в конец числа, а остальные цифры расставить в произвольном порядке перед ними. Полученное число будет делиться на 4 в силу признака делимости на 4.

Среди 7 различных цифр обязательно найдутся по крайней мере две чётных (иначе среди них было бы по крайней мере 6 нечётных цифр, а нечётных цифр всего 5). Числа, кратные 4, можно составить из «хороших» пар чётных цифр (0, 2), (0, 4), (0, 6), (0, 8), (2, 4), (2, 8), (4, 6), (4, 8) и (6, 8). Остаётся ещё «плохая» пара (2, 6). Если других чётных цифр в наборе нет, то в нём должны содержаться все нечётные цифры (в том числе 1). Тогда, используя имеющиеся в наборе в этом случае цифры 1 и 6, можно составить число 16, кратное 4. Если же в наборе есть другие чётные цифры, то есть по крайней мере одна из «хороших» пар чётных цифр, а этот случай рассмотрен выше.

Если число делится на 3, то в силу признака делимости и его сумма цифр делится на 3. Тогда произведение числа и суммы его цифр делится на 9. Если же число не делится на 3, то и сумма его цифр не делится на 3, значит, и произведение числа и суммы его цифр не делится на 3.

Таким образом, произведение числа на сумму его цифр либо делится на 9, либо не делится на 3. А число 4704 делится на 3, но не делится на 9.

Упражнение. В условии задачи не сказано, что число должно быть целым. Проверьте, что ответ останется тем же и для дробных чисел, записанных при помощи конечных десятичных дробей.

Сумма цифр числа, составленного из таких цифр, равна 10 · 0 + 10 · 1 + 10 · 2 = 30. Значит, в силу признаков делимости это число делится на 3, но не делится на 9.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *