Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

Π§Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABCD вписан Π² ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ радиуса R = 10. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ AB = BC = CD = 6.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅,Ρ‡Ρ‚ΠΎ прямыС BC ΠΈ AD ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

Π°) ΠžΡΡ‚Ρ€Ρ‹Π΅ ΡƒΠ³Π»Ρ‹ BCA ΠΈ CAD Ρ€Π°Π²Π½Ρ‹, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠΏΠΈΡ€Π°ΡŽΡ‚ΡΡ Π½Π° Π΄ΡƒΠ³ΠΈ стянутыС Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ Ρ…ΠΎΡ€Π΄Π°ΠΌΠΈ AB ΠΈ CD. Π—Π½Π°Ρ‡ΠΈΡ‚, прямыС BC ΠΈ AD ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

Π±) ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ ΡƒΠ³ΠΎΠ» BCA Ρ‡Π΅Ρ€Π΅Π· Ξ±. По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ синусов для Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC ΠΈΠΌΠ΅Π΅ΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABC Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΉ, поэтому Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cdΠ—Π½Π°Ρ‡ΠΈΡ‚, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cdΠ§Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABCD β€” равнобСдрСнная трапСция, поэтому Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cdΠ—Π½Π°Ρ‡ΠΈΡ‚, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ синусов для Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ACD ΠΈ ACB ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cdΠΎΡ‚ΠΊΡƒΠ΄Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ синуса Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Π΄Ρ€ΡƒΠ³ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡƒΠ½ΠΊΡ‚Π° Π±)

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ†Π΅Π½Ρ‚Ρ€ описанной окруТности Π»Π΅ΠΆΠΈΡ‚ Π²Π½Π΅ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Π΄Π²Π΅ высоту Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ BH β€” ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ B ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ Π΅ΠΉ ΠΏΡ€ΡΠΌΡƒΡŽ EF ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΡΡ‰ΡƒΡŽ Ρ‡Π΅Ρ€Π΅Π· Ρ†Π΅Π½Ρ‚Ρ€ окруТности. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ AE = x, OE = y. Π’ΠΎΠ³Π΄Π° ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° AOE ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° ΠΈΠΌΠ΅Π΅ΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cdΠ° ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° BOF: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cdΠ’ΠΎΠ³Π΄Π° высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cdΠ° AH = x – 3. НапишСм Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° для Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABH:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π² ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ Ρ€Π΅ΡˆΠΈΠΌ Π΅Π³ΠΎ.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd
Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π°ΠΌ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ, ΠΎΡ‚ΠΊΡƒΠ΄Π° AD = 2x = 15,84.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡƒΠ½ΠΊΡ‚Π° Π±), присланноС Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»Π΅ΠΌ сайта.

Π’Π°ΠΊ ΠΊΠ°ΠΊ AB = BC = CD, эти Ρ…ΠΎΡ€Π΄Ρ‹ ΡΡ‚ΡΠ³ΠΈΠ²Π°ΡŽΡ‚ Ρ€Π°Π²Π½Ρ‹Π΅ Π΄ΡƒΠ³ΠΈ. Π—Π½Π°Ρ‡ΠΈΡ‚, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cdПо Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ синусов для Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC ΠΈΠΌΠ΅Π΅ΠΌ: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cdΠΎΡ‚ΠΊΡƒΠ΄Π°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

ΠžΠΏΡƒΡΡ‚ΠΈΠΌ высоту BH Π½Π° основаниС AD. Π’ΠΎΠ³Π΄Π°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

ΠžΡ‚Π²Π΅Ρ‚: Π±) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ оцСнивания выполнСния заданияБаллы
Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° a) ΠΈ обоснованно ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π±)3
ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ обоснованный ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π±)

имССтся Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° Π°) ΠΈ ΠΏΡ€ΠΈ обоснованном Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡƒΠ½ΠΊΡ‚Π° Π±) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΈΠ·-Π·Π° арифмСтичСской ошибки

2
Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° Π°)

ΠΏΡ€ΠΈ обоснованном Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡƒΠ½ΠΊΡ‚Π° Π±) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΈΠ·-Π·Π° арифмСтичСской ошибки,

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

Около окруТности с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ O описана трапСция ABCD с основаниями AD ΠΈ BC.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, построСнная Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ AB ΠΊΠ°ΠΊ Π½Π° Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π΅, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ O.

Π±) НайдитС ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ β€” Ρ‚ΠΎΡ‡ΠΊΠΈ касания окруТности со сторонами Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΊ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ самой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ABCD, Ссли извСстно, Ρ‡Ρ‚ΠΎ AB = CD, Π° основания Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ относятся ΠΊΠ°ΠΊ 3 : 4.

Π°) Π¦Π΅Π½Ρ‚Ρ€ окруТности, вписанной Π² ΡƒΠ³ΠΎΠ», Π»Π΅ΠΆΠΈΡ‚ Π½Π° Π΅Π³ΠΎ биссСктрисС, поэтому AO ΠΈ BO β€” биссСктрисы ΡƒΠ³Π»ΠΎΠ² BAD ΠΈ ABC соотвСтствСнно. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ,

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ AB Π²ΠΈΠ΄Π΅Π½ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ O ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 90Β°. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎΡ‡ΠΊΠ° O ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ окруТности, построСнной Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ AB ΠΊΠ°ΠΊ Π½Π° Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π΅.

Π±) ΠŸΡƒΡΡ‚ΡŒ K, L, M ΠΈ N β€” Ρ‚ΠΎΡ‡ΠΊΠΈ касания окруТности со сторонами AB, BC, CD ΠΈ AD Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ соотвСтствСнно. Π’ΠΎΠ³Π΄Π° L β€” сСрСдина основания BC, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΡƒΠ³Π»Ρ‹ ABC ΠΈ BCD Ρ€Π°Π²Π½Ρ‹, ΡƒΠ³Π»Ρ‹ OBL ΠΈ OCL Ρ€Π°Π²Π½Ρ‹ ΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ OBL ΠΈ OCL Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ ΠΊΠ°Ρ‚Π΅Ρ‚Ρƒ OL ΠΈ острому ΡƒΠ³Π»Ρƒ. Аналогично N β€” сСрСдина основания AD. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ CM = CL = BL = BK = x; DM = DN = AN = AK = y (x

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

ΠŸΡƒΡΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ABCD Ρ€Π°Π²Π½Π° S, Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° KLMN Ρ€Π°Π²Π½Π° S1. Π’ΠΎΠ³Π΄Π°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

Π° Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ KM ΠΈ LN Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° KLMN пСрпСндикулярны, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

ΠžΡ‚Π²Π΅Ρ‚: Π±) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ ad мСньшС ab bc cd

ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ оцСнивания выполнСния заданияБаллы
Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° a) ΠΈ обоснованно ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π±)3
ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ обоснованный ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π±)

имССтся Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° Π°) ΠΈ ΠΏΡ€ΠΈ обоснованном Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡƒΠ½ΠΊΡ‚Π° Π±) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΈΠ·-Π·Π° арифмСтичСской ошибки

2
Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° Π°)

ΠΏΡ€ΠΈ обоснованном Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡƒΠ½ΠΊΡ‚Π° Π±) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΈΠ·-Π·Π° арифмСтичСской ошибки,

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *