Докажите что биссектрисы углов при основании равнобедренного треугольника равны
Биссектрисы равнобедренного треугольника
Свойства биссектрис равнобедренного треугольника
I. Биссектрисы углов при основании равнобедренного треугольника (проведенные к боковым сторонам), равны.
AN и BM — биссектрисы.
Рассмотрим треугольники ACN и BCM
(не забываем, как важно правильно назвать равные треугольники!).
1) AC=BC (по условию (как боковые стороны равнобедренного треугольника))
3) ∠ CAN= ∠ CBM (как углы, на которые биссектрисы делят равные углы при основании равнобедренного треугольника)
Следовательно, ∆ACN=∆BCM (по стороне и двум прилежащим к ней углам).
Из равенства треугольников следует равенство соответствующих сторон: AN=BM.
Что и требовалось доказать.
Если в треугольнике два угла раны, то этот треугольник — равнобедренный (по признаку).
Если в треугольнике две стороны равны, то этот треугольник — равнобедренный (по определению).
Отсюда вытекает, что
Биссектрисы, проведенные из равных углов треугольника, равны.
Биссектрисы, проведенные к равным сторонам треугольника, равны.
(Вместо пары треугольников ACN и BCM можно было рассмотреть треугольники ABM и BAN.
1) AB — общая сторона
2) ∠ MAB= ∠ NBA (как углы при основании равнобедренного треугольника)
3) ∠ ABM= ∠ BAN (как углы, образованные биссектрисами равных углов).
Следовательно, треугольники ACN и BCM равны по стороне и двум прилежащим к ней углам).
II. Биссектриса угла при основании равнобедренного треугольника делит боковую сторону на отрезки, пропорциональные боковой стороне и основанию.

