Докажите что предел произведения двух сходящихся последовательностей равен произведению их пределов
Свойства сходящихся последовательностей
Лекция 2. Сходящиеся последовательности. Монотонные последовательности. Основные теоремы.
Свойства сходящихся последовательностей
Теорема 1
Сходящаяся последовательность имеет только один предел.
Пусть a и b – пределы сходящейся последовательности . Используя формулу (2) можно записать
и
, где
,
— бесконечно малые последовательности. Вычитая, получим
Так как, все элементы последовательности имеют одно и тоже значение b-a, то по теореме 5 (см. ранее) b-a=0 и b=a. Теорема доказана.
Теорема 2
Сходящаяся последовательность ограничена.
Пусть последовательность сходящаяся и а – ее предел. Имеет место формула
,
— бесконечно малая последовательность. Так как бесконечно малая последовательность
— ограничена (теорема 3), то
справедливо
. Поэтому
для всех номеров n, что и означает ограниченность последовательности
.
Ограниченная последовательность может быть и не сходящейся.
Например
Теорема 3
Сумма сходящихся последовательностей и
есть сходящаяся последовательность, предел которой равен сумме пределов последовательностей
и
.
Пусть и
. Тогда
и
, соответственно
. Таким образом, последовательность
— бесконечно малая, и поэтому последовательность
сходится и имеет своим пределом a+b.
Теорема 4
Разность сходящихся последовательностей и
есть сходящаяся последовательность, предел которой равен разности пределов последовательностей
и
. Доказательство аналогичное.
Теорема 5
Произведение сходящихся последовательностей и
есть сходящаяся последовательность, предел которой равен произведению пределов последовательностей
и
.
Пусть и
. Тогда
и
, соответственно
Лемма
Если последовательность сходится, то есть
, то, начиная с некоторого номера, определена последовательность
, которая является ограниченной.
Пусть . Так как
. Пусть N – номер, соответствующий этому
, начиная с которого выполняется неравенство
. Из этого неравенства следует, что при
выполняется неравенство
. Действительно
Поэтому, при имеем
. Следовательно, начиная с этого номера N, можно рассматривать последовательность
, и эта последовательность ограничена. Лемма доказана.
Теорема 6
Частное двух сходящихся последовательностей и
при условии, что предел последовательности
отличен от 0, есть сходящаяся последовательность, предел которой равен частному пределов последовательностей
и
.
Из леммы следует, что, начиная с некоторого номера N элементы не равны 0 и последовательность
— ограничена. Начиная с этого номера, рассмотрим последовательность
. Пусть
и
.
Докажем, что — бесконечно малая последовательность. Так как
и
,
то . Так как
— ограничена, а последовательность
— бесконечно малая, то последовательность
— бесконечно малая, то есть
. Теорема доказана.
Предел последовательности. Свойства сходящихся последовательностей
Содержание:
По этой ссылке вы найдёте полный курс лекций по математике:
Отсюда следует, что добавление к последовательности конечного числа элементов или исключение из нее конечного числа элементов не влияет на ее сходимость и значение ее предела, изменяется лишь номер, начиная с которого все элементы последовательности попадают в выбранную ^-окрестность точки ft.
Пример 6.3. а:
Убедимся, что для (6.5) В силу очевидного неравенства 2+ (-!)» 3 п п примем N = [3/е]. Тогда при произвольном е > 0 для п > [3/е] будет выполнено условие в (6.7). в.
Предел последовательности
Свойства сходящихся последовательностей. В самом деле, при любом е > 0. Поэтому в (6.7) в качестве N можно выбрать любое натуральное число. Пример в.4. Проверим, что при а > 1 При предположим, что По определению логарифма, loga ап = п.
Отсюда Следствие 6.1. Сходящаяся последовательность, элементы которой знакопостоянны, не может иметь предел другого знака. В самом деле, если бы предел последовательности имел иной знак, то, согласно теореме 6.3, начиная с некоторого номера ее элементы приняли бы знак предела, что противоречит исходному условию. Пусть даны две последовательности <х„>и <уп>. Их суммой, произведением и частным называют последовательности <хп + Уп>, <х„у„>и <хп/у„>, а обратной к <у„>— последовательность <1>, причем последовательности <хп/уп>и <1 >определены лишь при условии уп ф 0 Vn € N. Ясно, что Теорема 6.4.
Если последовательности <хп>и <у„>сходятся соответственно к пределам а и 6, то Обозначим и выберем произвольное € > 0. Тогда: 1) для сходящихся последовательностей, по определению 6.3, что, согласно определению 6.3 предела последовательности, доказывает (6.10); 2) воспользуемся тождеством и с учетом (1.4) запишем по теореме 6.2 об ограниченности сходящейся последовательности и определению 6.2 ограниченной последовательности, для сходящихся последовательностей, согласно определению 6.3.
Ясно, что (6.10) и (6.11) нетрудно обобщить на любое конечное число слагаемых или сомножителей, если в их качестве •взять сходящиеся последовательности. Следствие в.2. При вычислении предела сходящейся последовательности один и тот же постоянный сомножитель в ее элементах можно выносить за символ предела.
Возможно вам будут полезны данные страницы:
В случае а = 1 результат очевиден, поскольку |
Выполним предварительно тождественные преобразования а из (6.19) искомый предел равен 1/5. Пример 6.8. Введенные при доказательстве теоремы 6.4 величины Дяп = |а-яп| и Луп = |6-у„| можно рассматривать как абсолютные погрешности приближенных значений хп и уп соответственно величин а и Ь. Тогда полученные в ходе доказательства теоремы соотношения, приближенно заменяя в них а на |хп| и |6| на |уп|, можно использовать для оценки погрешностей, возникающих при суммировании, умножении, обращении и делении приближенных значений, а именно:
Наибольшая возможная (максимальная) погрешность алгебраической суммы равна сумме погрешностей слагаемых, т.е. Бели в качестве погрешностей слагаемых рассматривать ошибки округления, то значение Дтах(яп + Уп) наиболее чувствительно к погрешности наименее точного слагаемого. Поэтому, чтобы избежать лцшних вычислений, не следует сохранять в более точном слагаемом лишние значащие цифры.
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сходящиеся последовательности
Последовательность, у которой существует предел, называется сходящейся. Последовательность не являющаяся сходящейся называется расходящейся.
В соответствии с этим определением всякая бесконечно малая последовательность является сходящейся и имеет своим пределом число ноль.
Можно, также, дать еще одно определение сходящейся последовательности: Последовательность
Некоторые свойства сходящихся последовательностей:
ТЕОРЕМА: Сходящаяся последовательность имеет только один предел.
ТЕОРЕМА: Сходящаяся последовательность ограничена.
Доказательство: Пусть
ТЕОРЕМА: Сумма сходящихся последовательностей <х n >и
Доказательство: Пусть а и b – соответственно пределы последовательностей <х n >и
ТЕОРЕМА: Разность сходящихся последовательностей <х n >и
Доказательство: Пусть а и b – соответственно пределы последовательностей <х n >и
ТЕОРЕМА: Произведение сходящихся последовательностей <х n >и
ЛЕММА: Если последовательность , которая является ограниченной.
ТЕОРЕМА: Частное двух сходящихся последовательностей
.
Так как последовательность ограничена, а последовательность
бесконечно мала, то последовательность
бесконечно малая. Теорема доказана.
Итак, теперь можно сказать, что арифметические операции над сходящимися последовательностями приводят к таким же арифметическим операциям над их пределами.
ТЕОРЕМА: Если элементы сходящейся последовательности
Элементы сходящейся последовательности .
.
.
Следствие 2: Если все элементы сходящейся последовательности
Это выполняется, так как а£ x n£ b, то a£ c£ b.
Итак, мы показали неравенства, которым удовлетворяют элементы сходящихся последовательностей, в пределе переходят в соответствующие неравенства для пределов этих последовательностей.
, и того, что
.
(m, n = 1, 2, 3, … ),
,…
должна либо расходиться к , причем предел этой последовательности будет равен ее нижней грани.
,
тогда существует конечный предел
,
(n = 1, 2, 3, … ).
(*)
сходится, ибо в силу неравенства (*) он мажорируется сходящимся рядом:
запишем целое число n по двоичной системе:
.
Применяя теорему (1) для данных:
s 0 =0, s 1 =, s m-1 =
, s m =
, …, p n0 =0, p n1 =
, …, p n, m-1 =
,
, p n, m+1 =0, …,
заключаем, что . Наконец, в силу (*) имеем:
.
Если общий член ряда, не являющегося ни сходящимся, ни расходящимся в собственном смысле, стремится к нулю, то частичные суммы этого ряда расположены всюду плотно между их нижним и верхним пределами lim inf и lim sup.
Разобьем числовую прямую на l интервалов точками
.
Существуют в сколь угодно большом удалении конечные последовательности , произвольно медленно нисходящие от верхнего предела последовательности к ее нижнему пределу.
, …
заполняет замкнутый интервал (длина которого равна нулю, если эта последовательность стремится к пределу).
Числовая последовательность, стремящаяся к , имеет наименьший член.
Какое бы число мы ни задали, слева от него будет находиться лишь конечное число членов последовательности, а среди конечного множества чисел существует одно или несколько наименьших.
Сходящаяся последовательность имеет либо наибольший член, либо наименьший, либо и тот и другой.
При совпадении верхней и нижней граней рассматриваемой последовательности теорема тривиальна. Пусть поэтому они различны. Тогда по крайней мере одна из них отличается от предела последовательности. Она и будет равна наибольшему, соответственно наименьшему, члену последовательности.
Пусть числовые последовательности
обладают тем свойством, что
,
.
Тогда существует бесконечно много номеров n, для которых одновременно выполняются неравенства
l n s n >l n-1 s n-1, l n s n >l n-2 s n-2, … l n s n >l 1 s 1,
Будем называть l m “выступающим” членом последовательности, если l m больше всех последующих членов. Согласно предположению в первой последовательности содержится бесконечно много выступающих членов; пусть это будут:
,…
,
(*)
отсюда заключаем, что
Если числовая последовательность ,… стремится к
и А превышает ее наименьший член, то существует такой номер n (возможно несколько таких), n³ 1, что n отношений
все не больше А, а бесконечное множество отношений
,…
Имеем . Пусть минимум последовательности
u=1, 2, …, n; v=1, 2, 3, …; n=0 исключено в силу предложений относительно А.
.
.
,
Пусть, далее, l 1 >A>0. Тогда существует такой номер n, n ³ 1, что одновременно выполняются все неравенства
.
Если А® 0, то также n® 0.
Тогда . Последовательность
все положительны: коль скоро А меньше наименьшего из них, соответствующий А номер n больше или равен s. Точки (n, L n ) должны быть обтянуты теперь бесконечным выпуклым сверху полигоном.