Докажите что в параллелепипеде авсда1в1с1д1 ас1 в1д 2вс
В прямоугольном параллелепипеде ABCDA1B1C1D1 проведена секущая плоскость, содержащая диагональ AC1 и пересекающая ребра BB1 и DD1 в точках F и E соответственно.
а) Докажите, что сечение AFC1E — параллелограмм.
б) Найдите площадь сечения, если известно, что AFC1E — ромб и AB = 3, BC = 2, AA1 = 5.
а) Параллельные плоскости пересекаются третьей по параллельным прямым. Следовательно, прямые AF и C1E параллельны, прямые AE и C1F параллельны, таким образом, AFC1E — параллелограмм.
Ответ: б)
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Докажите что в параллелепипеде авсда1в1с1д1 ас1 в1д 2вс
а) Докажите, что плоскость MPC делит объем параллелепипеда в отношении 1 : 11.
б) Найдите расстояние от точки D до плоскости MPC.
а) Построим последовательно:
2. Продолжим отрезок СР до пересечения с прямой AD. CP ∩ AD = K.
4. Отрезок PQ. PQMC — искомое сечение. Так как точки М, Р, С по построению лежат в плоскости сечения, то полученное сечение удовлетворяет условию задачи.
Плоскость МРС делит параллелепипед на два тела. Назовем их условно: нижнее и верхнее. Нижнее тело состоит из двух пирамид: четырехугольной PAQMD (основание AQMD, высота AP) и треугольной MDPC (основание Δ DPC, высота MD ).
Вычислим объем каждой из названных пирамид.
AQMD — трапеция, у которой основания AQ = 1; MD = 2, высота AP = 3.
=
Теперь найдем искомое отношение. что и требовалось доказать.
б) Для нахождения расстояния от точки D до плоскости МРС воспользуемся методом объемов. Выше мы уже рассматривали пирамиду MDPC. Если за ее основание принять Δ MPC, то ее высота и будет расстоянием от точки D до плоскости MPC.
Докажите что в параллелепипеде авсда1в1с1д1 ас1 в1д 2вс
В параллелепипеде ABCDA1B1C1D1 точка F середина ребра AB, а точка E делит ребро DD1 в отношении DE : ED1 = 6 : 1. Через точки F и E проведена плоскость α, параллельная прямой AC и пересекающая диагональ B1D в точке О.
а) Докажите, что плоскость α делит диагональ DB1 в отношении DO : OB1 = 2 : 3.
б) Найдите угол между плоскостью α и плоскостью (ABC), если дополнительно известно, что ABCDA1B1C1D1 — правильная четырехугольная призма, сторона основания которой равна 4, а высота равна 7.
а) Поскольку плоскость параллельна прямой AC, то она пересекает грань ABСD по некоторой прямой FL, параллельной прямой AC. Пусть точка и прямая FL пересекает прямую BD в точке K а прямая KE пересекает прямую BB1 в точке P. Тогда точка пересечения прямых B1D и KE есть точка пересечения плоскости с диагональю B1D (см. рис. 1).
Прямая FL параллельна AC, значит, точка F середина ребра AB, Тогда, отрезок FL ― средняя линия треугольника ABC и, следовательно,
Положим тогда
Далее имеем (см. рис. 2):
1) Треугольники и — подобны, откуда Таким образом
2) Треугольники и — подобны, откуда что и требовалось доказать.
б) Из того, что и получаем, что Значит, согласно теореме о трех перпендикулярах, Таким образом, угол ― линейный угол искомого двугранного угла.
Учитывая, что и из треугольника находим: откуда
Ответ: б)
На рисунке изображен прямоугольный параллелепипед, соответствующий условию пункта б).
Решение пункта а) справедливо для произвольного параллелепипеда.
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Докажите что в параллелепипеде авсда1в1с1д1 ас1 в1д 2вс
На ребре BB1 прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка F так, что B1F : FB = 3 : 4. Точка T — середина ребра B1C1. Известно, что AD = 12, AA1 = 14.
а) Докажите, что плоскость FTD1 делит ребро AA1 в отношении 6 : 1.
б) Найдите площадь сечения параллелепипеда плоскостью FTD1.