Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ссли высота Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния высот Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° основания, Ρ‚ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ Ρ€Ρ‘Π±Ρ€Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠΎΠΏΠ°Ρ€Π½ΠΎ пСрпСндикулярны.

ΠŸΡƒΡΡ‚ΡŒ H β€” Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния высот основания Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABC, Ρ‚ΠΎΠ³Π΄Π° SH β€” высота ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ AH β€” проСкция Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ SA Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ основания. Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ AH пСрпСндикулярна BC. По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎ Ρ‚Ρ€Π΅Ρ… пСрпСндикулярах SA пСрпСндикулярна BC. Аналогично SB пСрпСндикулярна AC ΠΈ SC пСрпСндикулярна AB.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ SABCD диагональ BD основания ABCD пСрпСндикулярна прямой, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰Π΅ΠΉ Ρ†Π΅Π½Ρ‚Ρ€ основания ΠΈ сСрСдину Ρ€Π΅Π±Ρ€Π° SC.

Аналоги ΠΊ заданию β„– 172: 173 ВсС

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Π² прямой ΠΏΡ€ΠΈΠ·ΠΌΠ΅ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныоснованиСм ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ являСтся Ρ€ΠΎΠΌΠ± ABCD, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпрямыС Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи BD пСрпСндикулярны.

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€ΠΎΠΌΠ±Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны, Ρ‚ΠΎΠ³Π΄Π° AC пСрпСндикулярно BD. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈΠ·ΠΌΠ° прямая, Ρ‚ΠΎ CC1 пСрпСндикулярно AC. Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ AC β€” проСкция AC1 Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ основания (Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΎ Ρ‚Ρ€Π΅Ρ… пСрпСндикулярах). Π’Π°ΠΊ ΠΊΠ°ΠΊ AC пСрпСндикулярно BD, Ρ‚ΠΎ ΠΈ AC1 пСрпСндикулярно BD.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны, ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· Π½ΠΈΡ… Ρ€Π°Π²Π½ΠΎ 3. НайдитС объСм ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

Π£Π΄ΠΎΠ±Π½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ASB основаниСм ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Ρ‚ΠΎΠ³Π΄Π° ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ SC Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ Π΅Ρ‘ высотой. Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныдалСС ΠΈΠΌΠ΅Π΅ΠΌ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠŸΡ€ΡΠΌΠ°Ρ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпСрпСндикулярна прямым Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныа ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈ плоскости Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π Π΅ΡˆΠΈΡ‚ΡŒ эту Π·Π°Π΄Π°Ρ‡Ρƒ ΠΌΠΎΠΆΠ½ΠΎ ΠΈ Π΄Π»ΠΈΠ½Π½Π΅Π΅, Π½ΠΎ Π³ΠΎΡ€Π°Π·Π΄ΠΎ Π±ΠΎΠ»Π΅Π΅ «Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ» способом! Π˜Ρ‚Π°ΠΊ:

1) Π’.ΠΊ. ΠΏΠΎ усл. SA=SB=SC=L=3, Ρ‚ΠΎ ΠΏΠΎ Ρ‚. ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° Π² βˆ†ASB: AB=√(3^2+3^2 )=3√2

Найдём высоту основания БК, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ О∈БК ΠΈ SK∩CK=K (SK-ΠΌΠ΅Π΄., бис ΠΈ выс. Ρ€Π°Π²Π½ΠΎΠ± Ρ‚Ρ€Π΅ΡƒΠ³. ASB).

3) Π‘ ΠΎΠ΄Π½ΠΎΠΉ стороны: S(βˆ†ABC)=(a^2 √3)/4=. =4,5√3

Π‘ Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны: S(βˆ†ABC)=1/2*AB*CK

ΠžΡ‚ΠΊΡƒΠ΄Π° (с ΡƒΡ‡. Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ AB=a=3√2), ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ

Бчитая Ρ‡Ρ‚ΠΎ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ пСрСсСч-я дСлятся Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 2 ΠΊ 1 считая ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, Π½Π°ΠΉΠ΄Ρ‘ΠΌ ОК=1/3*CK=0,5√6

4) ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈ всё! ПослСдний «Ρ€Ρ‹Π²ΠΎΠΊ»:

βˆ†ASК (Ρ‚. ΠŸΠΈΡ„): SK^2=3^2-(a/2)^2=9-18/4=4,5 (Π½Π΅ извлСкаю ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· SK, Ρ‚.ΠΊ. ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ дСйствиСм всё Ρ€Π°Π²Π½ΠΎ «ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ» Π²ΠΎΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ.

βˆ†SКО (Ρ‚. ΠŸΠΈΡ„): (SO)^2=(SK)^2-(OK)^2=9/2-6/4=3, Π·Π½Π°Ρ‡ΠΈΡ‚ искомая высота h=SO=√3, ΠΈ Π²ΠΎΡ‚ Ρ‚ΠΎΠ³Π΄Π°

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π’ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ PABCD всС Ρ€Π΅Π±Ρ€Π° Ρ€Π°Π²Π½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой. На Ρ€Π΅Π±Ρ€Π΅ PC ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° Ρ‚ΠΎΡ‡ΠΊΠ° K.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ ABK являСтся Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠ΅ΠΉ.

Π±) НайдитС ΡƒΠ³ΠΎΠ», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ABK с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Ссли извСстно, Ρ‡Ρ‚ΠΎ PK : KC = 3 : 1.

А) Π‘Ρ‚Ρ€ΠΎΠΈΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ:

3. ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ AF. AFKB β€” искомоС сСчСниС.

ПолоТСниС Ρ‚ΠΎΡ‡Π΅ΠΊ А, Π’ ΠΈ К Π·Π°Π΄Π°Π½ΠΎ условиСм Π·Π°Π΄Π°Ρ‡ΠΈ. Нам слСдуСт Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ:

1) F ∈ (ABK); 2) AFKB β€” трапСция. Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ.

1) Из условия: DC || AB, ΠΏΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ: KF || DC. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, KF || AB ΠΏΠΎ свойству транзитивности ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС ΠΌΠΎΠΆΠ½ΠΎ провСсти Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Ρƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, Ρ‚ΠΎ F ∈ (ABK).

2) Для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ AFKB β€” трапСция, достаточно ΡƒΠ±Π΅Π΄ΠΈΡ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ AF ΠΈ KB Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ AF || KB, Ρ‚ΠΎΠ³Π΄Π° AFKB β€” ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ, ΠΎΡ‚ΠΊΡƒΠ΄Π°: FK = AB, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, FK = CD, Ρ‡Π΅Π³ΠΎ Π±Ρ‹Ρ‚ΡŒ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎ смыслу Π·Π°Π΄Π°Ρ‡ΠΈ FK ΠžΡ‚Π²Π΅Ρ‚: Π‘) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π’ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ MABC с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ M сторона основания AB Ρ€Π°Π²Π½Π° 6. На Ρ€Π΅Π±Ρ€Π΅ AB ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° Ρ‚ΠΎΡ‡ΠΊΠ° K Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ AK : KB = 5 : 1.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ объСм ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ дСлится ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ MKC Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 5:1.

Π±) Π‘Π΅Ρ‡Π΅Π½ΠΈΠ΅ MKC являСтся Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ с основаниСм MK. НайдитС ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π±ΠΎΠΊΠΎΠ²Ρ‹ΠΌΠΈ гранями ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

Π°) ОбъСм ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ высоты Π½Π° ΠΎΠ΄Π½Ρƒ Ρ‚Ρ€Π΅Ρ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ основания. Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρƒ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ AKCM ΠΈ BKCM общая высота, провСдСнная ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ M. Основания этих ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ βˆ’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ AKC ΠΈ BKC соотвСтствСнно. Π£ этих Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, общая высота, провСдСнная ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ C, поэтому ΠΈΡ… ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ относятся ΠΊΠ°ΠΊ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Π°ΠΊ ΠΆΠ΅ относятся ΠΈ ΠΎΠ±ΡŠΠ΅ΠΌΡ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ AKCM ΠΈ BKCM.

Π±) ΠŸΡƒΡΡ‚ΡŒ L β€” сСрСдина AB. Π’ΠΎΠ³Π΄Π°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныДокаТитС Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠŸΡƒΡΡ‚ΡŒ BN β€” высота Π³Ρ€Π°Π½ΠΈ BMC, Π° MH β€” высота Π³Ρ€Π°Π½ΠΈ AMC. ΠŸΠΎΡΡ‡ΠΈΡ‚Π°Π΅ΠΌ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ€Π°Π²Π½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² BMC ΠΈ AMC двумя Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ способами: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныоткуда

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π˜ΡΠΊΠΎΠΌΡ‹ΠΉ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ гранями Ρ€Π°Π²Π΅Π½ ΡƒΠ³Π»Ρƒ, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ основанию Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ANB. Π­Ρ‚ΠΎΡ‚ ΡƒΠ³ΠΎΠ» Ρ€Π°Π²Π΅Π½ ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠΌΡƒ ΡƒΠ³Π»Ρƒ BNL. Π’ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ BNL ΠΈΠΌΠ΅Π΅ΠΌ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΡ‚Π²Π΅Ρ‚: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π’ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ PABC (P β€” Π²Π΅Ρ€ΡˆΠΈΠ½Π°) Ρ‚ΠΎΡ‡ΠΊΠ° K – сСрСдина AB, Ρ‚ΠΎΡ‡ΠΊΠ° M β€” сСрСдина BC, Ρ‚ΠΎΡ‡ΠΊΠ° N Π»Π΅ΠΆΠΈΡ‚ Π½Π° Ρ€Π΅Π±Ρ€Π΅ АР, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ АN : NP = 1 : 3.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниСм ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ N, K, M, являСтся равнобСдрСнная трапСция.

Π±) НайдитС ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ плоскостями NKM ΠΈ ABC, Ссли извСстно, Ρ‡Ρ‚ΠΎ AB = 6, АР = 8.

Π°) ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ Π½Π° Ρ€Π΅Π±Ρ€Π΅ PC Ρ‚ΠΎΡ‡ΠΊΡƒ T Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныВогда Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныоткуда KMTN β€” трапСция. Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ Π΄Π°Π»Π΅Π΅, Ρ‡Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпоэтому Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ CTM ΠΈ ANK Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ Π΄Π²ΡƒΠΌ сторонам ΠΈ ΡƒΠ³Π»Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи трапСция равнобСдрСнная.

(ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнытак Ρ‡Ρ‚ΠΎ это Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ).

Π±) ΠŸΡƒΡΡ‚ΡŒ H β€” сСрСдина AC, Ρ‚ΠΎΠ³Π΄Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Π·Π° O Ρ†Π΅Π½Ρ‚Ρ€ основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Π·Π° E ΠΈ F пСрСсСчСниС KM ΠΈ NT с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ PHB соотвСтствСнно, Π·Π° G β€” ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ Ρ‚ΠΎΡ‡ΠΊΠΈ F Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ABC (ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, ΠΎΠ½Π° Π»Π΅ΠΆΠΈΡ‚ Π½Π° BH). Π’ΠΎΠ³Π΄Π° FE, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны(ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π»Π΅ΠΆΠ°Ρ‚ Π² плоскости BHP) ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» искомого Π΄Π²ΡƒΠ³Ρ€Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° это Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ вычислСния.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны(ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π’ΠΎΠ³Π΄Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΡ‚Π²Π΅Ρ‚: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ВсС Ρ€Ρ‘Π±Ρ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABCD с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ S Ρ€Π°Π²Π½Ρ‹ 6. ОснованиС высоты SO этой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ являСтся сСрСдиной ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° SS1, M β€” сСрСдина Ρ€Π΅Π±Ρ€Π° AS, Ρ‚ΠΎΡ‡ΠΊΠ° L Π»Π΅ΠΆΠΈΡ‚ Π½Π° Ρ€Π΅Π±Ρ€Π΅ BC Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ BL : LC = 1 : 2.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABCD ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ S1LM β€” равнобокая трапСция.

Π±) ВычислитС Π΄Π»ΠΈΠ½Ρƒ срСднСй Π»ΠΈΠ½ΠΈΠΈ этой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

ΠŸΡ€ΡΠΌΠ°Ρ S1M пСрСсСкаСт ΠΌΠ΅Π΄ΠΈΠ°Π½Ρƒ AO Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABD Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ T Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ АВ : TO = 2 : 1, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ T β€” Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΌΠ΅Π΄ΠΈΠ°Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SAS1 ΠΈ O β€” Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ основания ABCD, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° SABCD ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, AT : TC = 1 : 2. Π’ΠΎΡ‡ΠΊΠ° L Π΄Π΅Π»ΠΈΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ BC Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ BL : LC = 1 : 2, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ACB ΠΈ TCL ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ с коэффициСнтом подобия k = AC : TC = BC : CL = 3 : 2, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ±Ρ‰ΠΈΠΉ ΡƒΠ³ΠΎΠ» с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ C ΠΈ стороны AC ΠΈ BC Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ ABC ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ сторонам TC ΠΈ LC Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° TCL, Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΌ Ρ‚ΠΎΡ‚ ΠΆΠ΅ ΡƒΠ³ΠΎΠ». Π—Π½Π°Ρ‡ΠΈΡ‚, сторона сСчСния, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ L ΠΈ T, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° сторонС AB основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABCD. ΠŸΡƒΡΡ‚ΡŒ эта сторона сСчСния пСрСсСкаСт сторону AD Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ P.

Π‘Ρ‚ΠΎΡ€ΠΎΠ½Π° сСчСния, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M Π² плоскости SAB, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° прямой AB, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ S1LM пСрСсСкаСт ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ SAB ΠΈ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΡΠΌΡƒΡŽ PL, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ плоскости SAB. ΠŸΡƒΡΡ‚ΡŒ эта сторона сСчСния пСрСсСкаСт сторону SB Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ K. Π’ΠΎΠ³Π΄Π° сСчСниС PMKL β€” равнобокая трапСция, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ AP = BL ΠΈ AM = BK.

Π‘ΠΎΠ»ΡŒΡˆΠ΅Π΅ основаниС LP Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½ΠΎ 6, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ABCD β€” ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚. Π’Ρ‚ΠΎΡ€ΠΎΠ΅ основаниС MK Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½ΠΎ 3, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ MK β€” срСдняя линия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SAB. Π—Π½Π°Ρ‡ΠΈΡ‚, срСдняя линия Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Аналоги ΠΊ заданию β„– 512357: 513347 512399 513366 ВсС

Π’ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ SABC Ρ‚ΠΎΡ‡ΠΊΠ° P β€” Π΄Π΅Π»ΠΈΡ‚ сторону AB Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнысчитая ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ A, Ρ‚ΠΎΡ‡ΠΊΠ° K β€” Π΄Π΅Π»ΠΈΡ‚ сторону BC Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнысчитая ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ C. Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ P ΠΈ K ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ SB ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныявляСтся ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ.

Π±) НайдитС расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ S Π΄ΠΎ плоскости Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныСсли извСстно, Ρ‡Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныДокаТитС Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π°) Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпоэтому Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ PBK ΠΈ ABC ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, Π° Ρ‚ΠΎΠ³Π΄Π° PK || AC. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпроходит Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΡΠΌΡƒΡŽ PK, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ плоскости ASC, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпСрСсСкаСт ASC ΠΏΠΎ прямой, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ PK. ΠŸΡƒΡΡ‚ΡŒ эта прямая пСрСсСкаСт SA ΠΈ SC Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… M ΠΈ L соотвСтствСнно. Π’ΠΎΠ³Π΄Π° прямыС PK, AC ΠΈ LM ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпоэтому прямыС MP ΠΈ LK ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ SB, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой. Π’ΠΎΠ³Π΄Π° Π² Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ LMKP ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ стороны ΠΏΠΎΠΏΠ°Ρ€Π½ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, сСчСниС β€” ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ.

Π‘ΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Ρ‘Π±Ρ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны, поэтому пСрпСндикулярны соотвСтствСнно ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠΌ прямыС LM ΠΈ LK. Π’Π΅ΠΌ самым, стороны сСчСния пСрпСндикулярны, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, сСчСниС β€” ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Π­Ρ‚ΠΎ ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ.

Π±) ΠŸΡƒΡΡ‚ΡŒ H β€” сСрСдина AC. ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ SH ΠΈ BH ΠΈ ΠΏΡƒΡΡ‚ΡŒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ SHB пСрСсСкаСт Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпо прямой QR. Π’ΠΎΠ³Π΄Π° QR || SB, Π° расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ S Π΄ΠΎ плоскости Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныравно d(SB, QR) β€” Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ прямыми SB ΠΈ QR. НайдСм Π΅Π³ΠΎ.

Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ SHB Π΄Π»ΠΈΠ½Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ высоту Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° НT ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ Π΅Ρ‘. ΠŸΡƒΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнытогда Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнытогда, примСняя Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² BHT ΠΈ SHT ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π’ΠΎΠ³Π΄Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпоэтому Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныа Ρ‚ΠΎΠ³Π΄Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ сСчСния Π΄Π΅Π»ΠΈΡ‚ высоту HT Π² Ρ‚ΠΎΠΌ ΠΆΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ, считая ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ T. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΡ‚Π²Π΅Ρ‚: Π±) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Аналоги ΠΊ заданию β„– 525393: 526014 526216 ВсС

ВсС Ρ€Ρ‘Π±Ρ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SBCD с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ S Ρ€Π°Π²Π½Ρ‹ 9. ОснованиС O высоты SO этой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ являСтся сСрСдиной ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° SS1, M β€” сСрСдина Ρ€Π΅Π±Ρ€Π° SB, Ρ‚ΠΎΡ‡ΠΊΠ° L Π»Π΅ΠΆΠΈΡ‚ Π½Π° Ρ€Π΅Π±Ρ€Π΅ CD Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ CL : LD = 7 : 2.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SBCD ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ S1LM β€” равнобСдрСнная трапСция.

Π±) ВычислитС Π΄Π»ΠΈΠ½Ρƒ срСднСй Π»ΠΈΠ½ΠΈΠΈ этой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

Π°) ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρƒ S1M Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SS1B, которая пСрСсСкаСт ΠΌΠ΅Π΄ΠΈΠ°Π½Ρƒ BB1 основания BCD Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ T. Π’ΠΎΠ³Π΄Π° BT : TB1 = 4 : 5, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ BO Ρ‚Π°ΠΊΠΆΠ΅ являСтся ΠΌΠ΅Π΄ΠΈΠ°Π½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SS1B.

Π’ΠΎΡ‡ΠΊΠ° L, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Π΄Π΅Π»ΠΈΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ B1D Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ DL : LB1 = 4 : 5, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ LD : LC = 2 : 7 ΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ BB1 β€” ΠΌΠ΅Π΄ΠΈΠ°Π½Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° BCD. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, сторона сСчСния, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ L ΠΈ T, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° сторонС BD основания BCD. ΠŸΡƒΡΡ‚ΡŒ прямая LT пСрСсСкаСт BC Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ P.

ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M ΡΡ€Π΅Π΄Π½ΡŽΡŽ линию Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ SBD, ΠΏΡƒΡΡ‚ΡŒ ΠΎΠ½Π° пСрСсСкаСт сторону SD Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ K. Π’ΠΎΠ³Π΄Π° PMKL β€” искомоС сСчСниС, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π˜Π· равСнства Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² BMP ΠΈ DKL ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныа Π·Π½Π°Ρ‡ΠΈΡ‚, PMKL β€” равнобСдрСнная трапСция.

Π±) Π‘ΠΎΠ»ΡŒΡˆΠ΅Π΅ основаниС PL Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½ΠΎ 7, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ LPC ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ. Π’Ρ‚ΠΎΡ€ΠΎΠ΅ основаниС MK Ρ€Π°Π²Π½ΠΎ 4,5, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ MK β€” срСдняя линия ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SBD. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, срСдняя линия Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ВсС Ρ€Ρ‘Π±Ρ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SBCD с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ S Ρ€Π°Π²Π½Ρ‹ 18. ОснованиС O высоты SO этой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ являСтся сСрСдиной ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° SS1, M β€” сСрСдина Ρ€Π΅Π±Ρ€Π° SB, Ρ‚ΠΎΡ‡ΠΊΠ° L Π»Π΅ΠΆΠΈΡ‚ Π½Π° Ρ€Π΅Π±Ρ€Π΅ CD Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ CL : LD = 7 : 2.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SBCD ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ S1LM β€” равнобСдрСнная трапСция.

Π±) ВычислитС Π΄Π»ΠΈΠ½Ρƒ срСднСй Π»ΠΈΠ½ΠΈΠΈ этой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

Π°) ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρƒ S1M Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SS1B, которая пСрСсСкаСт ΠΌΠ΅Π΄ΠΈΠ°Π½Ρƒ BB1 основания BCD Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ T. Π’ΠΎΠ³Π΄Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ BO Ρ‚Π°ΠΊΠΆΠ΅ являСтся ΠΌΠ΅Π΄ΠΈΠ°Π½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SS1B.

Π’ΠΎΡ‡ΠΊΠ° L, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Π΄Π΅Π»ΠΈΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ B1D Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнытак ΠΊΠ°ΠΊ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ BB1 β€” ΠΌΠ΅Π΄ΠΈΠ°Π½Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° BCD. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, сторона сСчСния, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ L ΠΈ T, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° сторонС BD основания BCD. ΠŸΡƒΡΡ‚ΡŒ прямая LT пСрСсСкаСт BC Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ P.

ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M ΡΡ€Π΅Π΄Π½ΡŽΡŽ линию Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ SBD, ΠΏΡƒΡΡ‚ΡŒ ΠΎΠ½Π° пСрСсСкаСт сторону SD Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ K. Π’ΠΎΠ³Π΄Π° PMKL β€” искомоС сСчСниС, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π˜Π· равСнства Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² BMP ΠΈ DKL ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныа Π·Π½Π°Ρ‡ΠΈΡ‚, PMKL β€” равнобСдрСнная трапСция.

Π±) Π‘ΠΎΠ»ΡŒΡˆΠ΅Π΅ основаниС PL Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½ΠΎ 14, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ LPC ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ. Π’Ρ‚ΠΎΡ€ΠΎΠ΅ основаниС MK Ρ€Π°Π²Π½ΠΎ 9, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ MK β€” срСдняя линия ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SBD. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, срСдняя линия Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Аналоги ΠΊ заданию β„– 530673: 530693 ВсС

Π’ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ MABCD Ρ‡Π΅Ρ€Π΅Π· сСрСдины сторон АВ ΠΈ AD ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π±ΠΎΠΊΠΎΠ²ΠΎΠΌΡƒ Ρ€Π΅Π±Ρ€Ρƒ АМ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ. Π‘Ρ‚ΠΎΡ€ΠΎΠ½Π° основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Π° 20, Π° Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ β€” Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ этой ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ являСтся ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ с трСмя прямыми ΡƒΠ³Π»Π°ΠΌΠΈ.

Π±) НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ этого сСчСния.

Π°) ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ K β€” сСрСдину Ρ€Π΅Π±Ρ€Π° АВ, L β€” сСрСдину Ρ€Π΅Π±Ρ€Π° AD. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ сСчСния ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Ρ€Π΅Π±Ρ€Ρƒ AM, Ρ‚ΠΎ ΠΎΠ½Π° пСрСсСкаСт Π³Ρ€Π°Π½ΠΈ MAB ΠΈ MAD ΠΏΠΎ прямым, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ AM β€” срСдним линиям Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² MAB ΠΈ MAD. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ сСчСниС пСрСсСкаСт Ρ€Π΅Π±Ρ€Π° AB, AD, MB ΠΈ MD, Π°, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈ всС Π³Ρ€Π°Π½ΠΈ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, сСчСниС являСтся ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ.

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ P β€” сСрСдину Ρ€Π΅Π±Ρ€Π° MB ΠΈ Q β€” сСрСдину Ρ€Π΅Π±Ρ€Π° MD. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ пСрСсСчСния сСчСния с Ρ€Π΅Π±Ρ€Π°ΠΌΠΈ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠŸΡ€ΠΈ этом ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ PK, AM ΠΈ QL ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ KL ΠΈ BD ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠŸΡ€ΡΠΌΠ°Ρ BD пСрпСндикулярна плоскости MAC, Π°, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈ прямой AM, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ PK ΠΈ QL пСрпСндикулярны ΠΎΡ‚Ρ€Π΅Π·ΠΊΡƒ KL, Π° ΡƒΠ³Π»Ρ‹ PKL ΠΈ QLK β€” прямыС.

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния сСчСния с Ρ€Π΅Π±Ρ€ΠΎΠΌ MC β€” R, с прямой AC β€” T (сСрСдина KL), с высотой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ MO β€” S (сСрСдина PQ). Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныВаким ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, KLQP β€” ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ со стороной Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ RT ΠΈ AM ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ RTC ΠΏΠΎΠ΄ΠΎΠ±Π΅Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ MAC с коэффициСнтом Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ RT Ρ€Π°Π²Π΅Π½ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныВаким ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ RS, PS ΠΈ SQ Ρ€Π°Π²Π½Ρ‹ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ ΠΈ Ρ€Π°Π²Π½Ρ‹ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π˜Π· Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ слСдуСт, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ PRQ β€” ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΈ ΡƒΠ³ΠΎΠ» PRQ β€” прямой.

Π±) Как Π±Ρ‹Π»ΠΎ сказано Π² ΠΏ. Π°) сСчСниС разбиваСтся Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ со стороной Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ с Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·ΠΎΠΉ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи высотой Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныНайдСм ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ сСчСния:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ВсС Ρ€Ρ‘Π±Ρ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABCD с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ S Ρ€Π°Π²Π½Ρ‹ 12. ОснованиС высоты SO этой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ являСтся сСрСдиной ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° SS1, M β€” сСрСдина Ρ€Π΅Π±Ρ€Π° AS, Ρ‚ΠΎΡ‡ΠΊΠ° L Π»Π΅ΠΆΠΈΡ‚ Π½Π° Ρ€Π΅Π±Ρ€Π΅ BC Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ BL : LC = 1 : 2.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABCD ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ S1LM β€” равнобокая трапСция.

Π±) ВычислитС Π΄Π»ΠΈΠ½Ρƒ срСднСй Π»ΠΈΠ½ΠΈΠΈ этой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

ΠŸΡ€ΡΠΌΠ°Ρ S1M пСрСсСкаСт ΠΌΠ΅Π΄ΠΈΠ°Π½Ρƒ AO Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABD Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ T Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ АВ : TO = 2 : 1, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ T β€” Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΌΠ΅Π΄ΠΈΠ°Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SAS1 ΠΈ O β€” Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ основания ABCD, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° SABCD ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, AT : TC = 1 : 2. Π’ΠΎΡ‡ΠΊΠ° L Π΄Π΅Π»ΠΈΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ BC Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ BL : LC = 1 : 2, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ACB ΠΈ TCL ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ с коэффициСнтом подобия k = AC : TC = BC : CL = 3 : 2, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ±Ρ‰ΠΈΠΉ ΡƒΠ³ΠΎΠ» с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ C ΠΈ стороны AC ΠΈ BC Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ ABC ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ сторонам TC ΠΈ LC Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° TCL, Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΌ Ρ‚ΠΎΡ‚ ΠΆΠ΅ ΡƒΠ³ΠΎΠ». Π—Π½Π°Ρ‡ΠΈΡ‚, сторона сСчСния, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ L ΠΈ T, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° сторонС AB основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABCD. ΠŸΡƒΡΡ‚ΡŒ эта сторона сСчСния пСрСсСкаСт сторону AD Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ P.

Π‘Ρ‚ΠΎΡ€ΠΎΠ½Π° сСчСния, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M Π² плоскости SAB, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° прямой AB, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ S1LM пСрСсСкаСт ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ SAB ΠΈ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΡΠΌΡƒΡŽ PL, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ плоскости SAB. ΠŸΡƒΡΡ‚ΡŒ эта сторона сСчСния пСрСсСкаСт сторону SB Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ K. Π’ΠΎΠ³Π΄Π° сСчСниС PMKL β€” равнобокая трапСция, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ AP = BL ΠΈ AM = BK.

Π‘ΠΎΠ»ΡŒΡˆΠ΅Π΅ основаниС LP Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½ΠΎ 12, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ABCD β€” ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚. Π’Ρ‚ΠΎΡ€ΠΎΠ΅ основаниС MK Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½ΠΎ 6, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ MK β€” срСдняя линия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SAB. Π—Π½Π°Ρ‡ΠΈΡ‚, срСдняя линия Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Аналоги ΠΊ заданию β„– 512357: 513347 512399 513366 ВсС

Π’ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ PABC Ρ‚ΠΎΡ‡ΠΊΠΈ Π•, F, K, M, N β€” сСрСдины Ρ€Π΅Π±Π΅Ρ€ АБ, Π’Π‘, РА, Π Π’ ΠΈ Π Π‘ соотвСтствСнно.

А) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ объСм ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ NEFMK составляСт Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ объСма ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ PABC.

Π‘) НайдитС радиус сфСры, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ N, Π•, F, M, K, Ссли извСстно, Ρ‡Ρ‚ΠΎ АВ = 8, АР = 6.

Π°) Π’Ρ‹Ρ€Π°Π·ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΎΠ±ΡŠΡ‘ΠΌΠ° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ NEFMK ΠΈΠ· ΠΎΠ±ΡŠΡ‘ΠΌΠ° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ PABC:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

( Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныдСлит высоту ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° плоскости основания).

Π±) ΠŸΡƒΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны— сСрСдина Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныВогда Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны— ΠΎΠ±Π° ΠΎΠ½ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныс коэффициСнтом Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΎΠ½ΠΈ ΠΎΠ±Π° равносторонниС. Π¦Π΅Π½Ρ‚Ρ€ сфСры Π±ΡƒΠ΄Π΅Ρ‚ Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π½Π° высотС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, которая Ρ€Π°Π²Π½Π°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныравны ΠΈ ΠΈΡ… радиусы описанных окруТностСй. Они Ρ€Π°Π²Π½Ρ‹ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныА Ρ†Π΅Π½Ρ‚Ρ€ сфСры Π»Π΅ΠΆΠΈΡ‚ посрСдинС ΠΌΠ΅ΠΆΠ΄Ρƒ плоскостями этих Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ². ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ расстояниС ΠΎΡ‚ Π½Π΅Π³ΠΎ Π΄ΠΎ плоскостСй Ρ€Π°Π²Π½ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Ρ‚ΠΎΠ³Π΄Π° радиус сфСры Ρ€Π°Π²Π΅Π½ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΡ‚Π²Π΅Ρ‚: Π±) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π’ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ SABC Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ SA = 6, Π° сторона основания AB = 4.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ объСм ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABC Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ Ρ€Π΅Π±Ρ€Π° SC Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ сСчСния ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ€Π΅Π±Ρ€ΠΎ AB пСрпСндикулярно Ρ€Π΅Π±Ρ€Ρƒ SC.

Π±) НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ этого сСчСния.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Ρ€Π°Π²Π΅Π½ ΠΎΠ±ΡŠΡ‘ΠΌΡƒ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

Π±) ΠŸΡƒΡΡ‚ΡŒ β€” SO высота ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ SCO ΠΈΠΌΠ΅Π΅ΠΌ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΠ±ΡŠΡ‘ΠΌ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABC Ρ€Π°Π²Π΅Π½

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠŸΡ€ΠΈΡ€Π°Π²Π½ΠΈΠ²Π°Ρ Π΄Π²Π° Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹Ρ… значСния для ΠΎΠ±ΡŠΡ‘ΠΌΠ°, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΡ‚Π²Π΅Ρ‚ : Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Аналоги ΠΊ заданию β„– 504416: 504437 511387 ВсС

ВсС Ρ€Ρ‘Π±Ρ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SBCD с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ S Ρ€Π°Π²Π½Ρ‹ 9.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SBCD ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ S1LM β€” равнобСдрСнная трапСция.

Π±) ВычислитС Π΄Π»ΠΈΠ½Ρƒ срСднСй Π»ΠΈΠ½ΠΈΠΈ этой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

Π°) ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρƒ S1M Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SS1B, которая пСрСсСкаСт ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ BB1, ΡΠ²Π»ΡΡŽΡ‰ΠΈΠΉΡΡ ΠΌΠ΅Π΄ΠΈΠ°Π½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° BCD, Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ T. Π’ΠΎΠ³Π΄Π° Π’Π’ : Π’Π’1 = 4 : 5, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ T β€” Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΌΠ΅Π΄ΠΈΠ°Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SS1B, Π° O β€” Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΌΠ΅Π΄ΠΈΠ°Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° BCD.

Π’ΠΎΡ‡ΠΊΠ° L, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Π΄Π΅Π»ΠΈΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ B1D Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ DL : LΠ’1 = 4 : 5, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ LD : LC = 2 : 7, Π° BB1 β€” ΠΌΠ΅Π΄ΠΈΠ°Π½Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° BCD.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, сторона сСчСния, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ L ΠΈ T, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° сторонС BD основания BCD. ΠŸΡƒΡΡ‚ΡŒ прямая LT пСрСсСкаСт BC Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ P.

ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ SBD Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M ΡΡ€Π΅Π΄Π½ΡŽΡŽ линию, ΠΏΡƒΡΡ‚ΡŒ ΠΎΠ½Π° пСрСсСкаСт сторону SD Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ K. Π’ΠΎΠ³Π΄Π° PMKL β€” искомоС сСчСниС, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ BP = DL ΠΈ BM = KD. Из равСнства Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² BMP ΠΈ DKL ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ MP = KL, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, PMKL β€” равнобСдрСнная трапСция.

Π±) Π‘ΠΎΠ»ΡŒΡˆΠ΅Π΅ основаниС PL Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½ΠΎ 7, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ LPC ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ. Π’Ρ‚ΠΎΡ€ΠΎΠ΅ основаниС MK Ρ€Π°Π²Π½ΠΎ 4,5, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ MK β€” срСдняя линия ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SBD. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, срСдняя линия Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠΏΠΎΡ‡Π΅ΠΌΡƒ Π² 1-ΠΎΠΌ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ BT : TB1 = 4:5, Ρ‡Ρ‚ΠΎ это Π·Π° свойство? «ΠΏΠΎΒ­ΡΠΊΠΎΠ»ΡŒΒ­ΠΊΡƒ BB1 Ρ‚Π°ΠΊΠΆΠ΅ яв­ля­Ст­ся ΠΌΠ΅Β­Π΄ΠΈΒ­Π°Β­Π½ΠΎΠΉ Ρ‚Ρ€Π΅Β­ΡƒΠ³ΠΎΠ»ΡŒΒ­Π½ΠΈΒ­ΠΊΠ° SS1B.» Ρ‚Π°ΠΊΠΎΠ³ΠΎ свойства Π½Π΅Ρ‚

Π­Ρ‚ΠΎ Ρ…ΠΎΡ€ΠΎΡˆΠΎ всСм извСстноС свойство ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‹, остаСтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΈΠΌ Π΄Π²Π°ΠΆΠ΄Ρ‹.

Π‘ΠΊΠ°ΠΆΠΈΡ‚Π΅, ΠΎΡ‚ΠΊΡƒΠ΄Π° Π²Ρ‹ Π±Π΅Ρ€Π΅Ρ‚Π΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ 4:5? ΠœΠΎΠΆΠ΅Ρ‚Π΅ это свойство ΠΌΠ΅Π΄ΠΈΠ°Π½ ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ?

ΠœΠ΅Π΄ΠΈΠ°Π½Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° дСлятся Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ пСрСсСчСния Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 2:1

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ВсС Ρ€Ρ‘Π±Ρ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SBCD с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ S Ρ€Π°Π²Π½Ρ‹ 18.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SBCD ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ S1LM β€” равнобокая трапСция.

Π±) ВычислитС Π΄Π»ΠΈΠ½Ρƒ срСднСй Π»ΠΈΠ½ΠΈΠΈ этой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρƒ S1M Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SS1B, которая пСрСсСкаСт ΠΌΠ΅Π΄ΠΈΠ°Π½Ρƒ BB1 основания BCD Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ T. Π’ΠΎΠ³Π΄Π° Π’Π’ : Π’Π’1 = 4 : 5, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ BB1 Ρ‚Π°ΠΊΠΆΠ΅ являСтся ΠΌΠ΅Π΄ΠΈΠ°Π½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SS1B.

Π’ΠΎΡ‡ΠΊΠ° L, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Π΄Π΅Π»ΠΈΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ B1D Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ DL : LΠ’1 = 4 : 5, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ LD : LC = 2 : 7 ΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ BB1 β€” ΠΌΠ΅Π΄ΠΈΠ°Π½Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° BCD.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, сторона сСчСния, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ L ΠΈ T, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° сторонС BD основания BCD. ΠŸΡƒΡΡ‚ΡŒ прямая LT пСрСсСкаСт BC Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ P.

ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M ΡΡ€Π΅Π΄Π½ΡŽΡŽ линию Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ SBD, ΠΏΡƒΡΡ‚ΡŒ ΠΎΠ½Π° пСрСсСкаСт сторону SD Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ K. Π’ΠΎΠ³Π΄Π° PMKL β€” искомоС сСчСниС, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ BP = DL ΠΈ BM = KD. Из равСнства Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² BMP ΠΈ DKL ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ MP = KL, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, PMKL β€” равнобокая трапСция.

Π±) Π‘ΠΎΠ»ΡŒΡˆΠ΅Π΅ основаниС PL Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½ΠΎ 14, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ LPC ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ. Π’Ρ‚ΠΎΡ€ΠΎΠ΅ основаниС MK Ρ€Π°Π²Π½ΠΎ 9, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ MK β€” срСдняя линия ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SBD. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, срСдняя линия Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Аналоги ΠΊ заданию β„– 512357: 513347 512399 513366 ВсС

Π’ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ SABC Ρ‚ΠΎΡ‡ΠΊΠ° P β€” сСрСдина AB, Ρ‚ΠΎΡ‡ΠΊΠ° K β€” сСрСдина BC. Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ P ΠΈ K ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ SB ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Ω.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ Ω являСтся ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ.

Π±) НайдитС расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ S Π΄ΠΎ плоскости Ω, Ссли извСстно, Ρ‡Ρ‚ΠΎ SC = 5, AC = 6.

Π°) ΠŸΡƒΡΡ‚ΡŒ L β€” сСрСдина SC, M β€” сСрСдина SA. Π’ΠΎΠ³Π΄Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны(срСдняя линия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Π΅Π³ΠΎ сторонС) ΠΈ, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‚ΠΎΡ‡ΠΊΠΈ P, K, L, M Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ‚Π°ΠΊΠΆΠ΅ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныэто ΠΈ Π΅ΡΡ‚ΡŒ описанная Π² условии ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныА сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ β€” Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ PKLM. Он ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныВычислим Π΅Π³ΠΎ ΡƒΠ³ΠΎΠ».

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ проСкция SB Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ABC β€” высота BH Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC.

Π±) ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ SBH, Π³Π΄Π΅ H β€” сСрСдина AC. ΠŸΡƒΡΡ‚ΡŒ ΠΎΠ½Π° пСрСсСкаСт ML ΠΈ PK Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… T ΠΈ Q соотвСтствСнно. Π­Ρ‚Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ пСрпСндикулярна ML, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ любая прямая Π² этой плоскости пСрпСндикулярна ML. Π—Π½Π°Ρ‡ΠΈΡ‚, Ссли ΠΎΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ пСрпСндикуляр ΠΈΠ· B Π½Π° TQ β€” это ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ искомоС расстояниС. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅, Ρ‡Ρ‚ΠΎ T ΠΈ Q β€” сСрСдины SH ΠΈ BH соотвСтствСнна, поэтому TQ β€” срСдняя линия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° SHB ΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Рассмотрим Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ SHB. Π’ Π½Π΅ΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныЕсли провСсти Π² Π½Π΅ΠΌ высоту ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ S, ΠΎΠ½Π° ΡƒΠΏΠ°Π΄Π΅Ρ‚ Π² Ρ†Π΅Π½Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π² Ρ‚ΠΎΡ‡ΠΊΡƒ, Π΄Π΅Π»ΡΡ‰ΡƒΡŽ BH Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныоткуда Π΄Π»ΠΈΠ½Π° этой высоты Ρ€Π°Π²Π½Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π½ΡƒΠΆΠ½ΠΎΠ΅ расстояниС.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΡ‚Π²Π΅Ρ‚: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π’ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ SABC Ρ€Π΅Π±Ρ€Π° AB = 2, SC = 3. Π§Π΅Ρ€Π΅Π· ΡΡ€Π΅Π΄Π½ΡŽΡŽ линию MN Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° АВБ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ AB, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сСчСниС минимальной ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABC, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰Π΅Π΅ Ρ€Π΅Π±Ρ€ΠΎ SC.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ это сСчСниС пСрпСндикулярно Ρ€Π΅Π±Ρ€Ρƒ SC.

Π±) НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ этого сСчСния

Π°) ΠŸΡƒΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны— Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния этого сСчСния с Ρ€Π΅Π±Ρ€ΠΎΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны— сСрСдина Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныравны ΠΏΠΎ Π΄Π²ΡƒΠΌ сторонам ΠΈ ΡƒΠ³Π»Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ, поэтому Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныЗначит,

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ минимальна, Ссли Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны— ΠΊΡ€Π°Ρ‚Ρ‡Π°ΠΉΡˆΠ΅Π΅ расстояниС ΠΎΡ‚ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныдо Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныЗначит, прямая Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпСрпСндикулярна прямой Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, прямая Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпСрпСндикулярна прямой Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ проСкция Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнына ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ основания β€” высота Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпровСдСнная ΠΈΠ· Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныона пСрпСндикулярна Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныа Ρ‚ΠΎΠ³Π΄Π° ΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныЗначит, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпСрпСндикулярна Π΄Π²ΡƒΠΌ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠΌΡΡ прямым Π² плоскости Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпоэтому прямая Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпСрпСндикулярна плоскости Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π±) Вычислим высоту ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Она Ρ€Π°Π²Π½Π°:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΠ°Π΄Π°Π΅Ρ‚ Π² Ρ‚Π°ΠΊΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнына высотС основания Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнычто Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныДалСС,

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Как ΡƒΠΆΠ΅ установлСно Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π°) Π—Π½Π°Ρ‡ΠΈΡ‚, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΡ‚Π²Π΅Ρ‚: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”Π°Π½Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° MABCD, всС Ρ€Ρ‘Π±Ρ€Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π½Ρ‹ 12. Π’ΠΎΡ‡ΠΊΠ° N β€” сСрСдина Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π° MA, Ρ‚ΠΎΡ‡ΠΊΠ° K Π΄Π΅Π»ΠΈΡ‚ Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ MB Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 2 : 1, считая ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ M.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ N ΠΈ K ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ прямой AD, являСтся Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠ΅ΠΉ.

Π±) НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ этого сСчСния.

Π°) Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ N ΠΈ K ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ прямыС, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π±Ρ€Ρƒ AD. Π­Ρ‚ΠΈ прямыС ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ Ρ€Ρ‘Π±Ρ€Π° MD ΠΈ MC Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… P ΠΈ L соотвСтствСнно. Π§Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ KLPN β€” сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘Ρ‚ΠΎΡ€ΠΎΠ½Ρ‹ NP ΠΈ KL ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΈ Π½Π΅ Ρ€Π°Π²Π½Ρ‹. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, KLPN β€” трапСция. Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°Ρ… NMK ΠΈ PML ΡƒΠ³Π»Ρ‹ ΠΏΡ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ M Ρ€Π°Π²Π½Ρ‹, ML = MK, MN = MP. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ Ρ€Π°Π²Π½Ρ‹, ΠΈ поэтому NK = PL. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, трапСция KLPN равнобСдрСнная.

Π±) ΠŸΡƒΡΡ‚ΡŒ NH β€” высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ KLPN. ИмССм Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Найдём NK ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° NMK. ИмССм NM = NP = 6, MK = KL = 8. По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ косинусов, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ трапСция равнобСдрСнная, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° KHN ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΡ‚Π²Π΅Ρ‚: Π±) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”Π°Π½Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° MABCD, всС Ρ€Ρ‘Π±Ρ€Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π½Ρ‹ 6. Π’ΠΎΡ‡ΠΊΠ° N β€” сСрСдина Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π° MA, Ρ‚ΠΎΡ‡ΠΊΠ° K Π΄Π΅Π»ΠΈΡ‚ Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ MB Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 5:1, считая ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ M.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ N ΠΈ K ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ прямой AD, являСтся Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠ΅ΠΉ.

Π±) НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ этого сСчСния.

Π°) Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ N ΠΈ K ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ прямыС, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π±Ρ€Ρƒ AD. Π­Ρ‚ΠΈ прямыС ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ Ρ€Ρ‘Π±Ρ€Π° MD ΠΈ MC Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… P ΠΈ L соотвСтствСнно. Π§Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ KLPN β€” сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘Ρ‚ΠΎΡ€ΠΎΠ½Ρ‹ NP ΠΈ KL ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΈ Π½Π΅ Ρ€Π°Π²Π½Ρ‹. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, KLPN β€” трапСция. Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°Ρ… NMK ΠΈ PML ΡƒΠ³Π»Ρ‹ ΠΏΡ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ M Ρ€Π°Π²Π½Ρ‹, ML = MK, MN = MP. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ Ρ€Π°Π²Π½Ρ‹, ΠΈ поэтому NK = PL. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, трапСция KLPN равнобСдрСнная.

Π±) ΠŸΡƒΡΡ‚ΡŒ NH β€” высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ KLPN. ИмССм Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Найдём NK ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° NMK. ИмССм NM = NP = 3, MK = KL = 5. По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ косинусов, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ трапСция равнобСдрСнная, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° KHN ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΡ‚Π²Π΅Ρ‚: Π±) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Аналоги ΠΊ заданию β„– 519810: 519829 ВсС

Π’ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ SABC Ρ‚ΠΎΡ‡ΠΊΠ° K β€” Π΄Π΅Π»ΠΈΡ‚ сторону SC Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнысчитая ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ S, Ρ‚ΠΎΡ‡ΠΊΠ° N β€” Π΄Π΅Π»ΠΈΡ‚ сторону SB Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнысчитая ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ S. Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ N ΠΈ K ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ SA ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ прямой BC.

Π±) НайдитС расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ B Π΄ΠΎ плоскости Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныСсли извСстно, Ρ‡Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныДокаТитС Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π°) Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ SNK ΠΈ SBC ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ ΠΏΠΎ Π΄Π²ΡƒΠΌ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ сторонам ΠΈ ΡƒΠ³Π»Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ, поэтому ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ NK ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ Π’Π‘. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ прямая Π’Π‘ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π² плоскости сСчСния прямой NK, ΠΎΠ½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° ΠΈ самой плоскости сСчСния ΠΏΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямой ΠΈ плоскости.

Π±) ΠŸΡƒΡΡ‚ΡŒ H β€” сСрСдина BC. ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ SH ΠΈ AH ΠΈ ΠΏΡƒΡΡ‚ΡŒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ SHA пСрСсСкаСт Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпо прямой QR (см. рис.). Π’ΠΎΠ³Π΄Π° QR ΠΈ SА ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Π° расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ B Π΄ΠΎ плоскости Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныравно Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Н Π΄ΠΎ плоскости Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ SHA ΠΈΠΌΠ΅Π΅ΠΌ: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ высоту Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° НT ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ Π΅Ρ‘. ΠŸΡƒΡΡ‚ΡŒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнытогда Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнытогда, примСняя Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° для Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ATH ΠΈ STH, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π’ΠΎΠ³Π΄Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

По ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ, ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ НT пСрпСндикулярСн Ρ€Π΅Π±Ρ€Ρƒ SA. Π’ силу ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ SA ΠΈ QR, ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ НT ΠΈ QR Ρ‚Π°ΠΊΠΆΠ΅ пСрпСндикулярны. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Ρ€Π΅Π±Ρ€ΠΎ Π’Π‘ пСрпСндикулярно плоскости SHA ΠΏΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ пСрпСндикулярности прямой ΠΈ плоскости, Π° ΠΏΠΎΡ‚ΠΎΠΌΡƒ ΠΈ Π’Π‘ пСрпСндикулярно НT. Но Π’Π‘ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ NK, поэтому НT ΠΈ NK пСрпСндикулярны. Π’Π΅ΠΌ самым, прямая НT пСрпСндикулярна Π΄Π²ΡƒΠΌ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠΌΡΡ прямым NK ΠΈ QR, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠΌ Π² плоскости сСчСния, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ всСй плоскости сСчСния.

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ SNK ΠΈ SBC ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ с коэффициСнтом Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпоэтому Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныа Ρ‚ΠΎΠ³Π΄Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ QHR ΠΈ SHA ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ с коэффициСнтом Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныЭто ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ сСчСния Π΄Π΅Π»ΠΈΡ‚ высоту HT Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 2:1, считая ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Н. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Н ΠΈ QR Ρ€Π°Π²Π½ΠΎ Π΄Π²ΡƒΠΌ Ρ‚Ρ€Π΅Ρ‚ΡŒΠΈΠΌ высоты HT ΠΈΠ»ΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΡ‚Π²Π΅Ρ‚: Π±) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π’ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π½ΠΈΠΆΠ½Π΅Π³ΠΎ основания Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Π° с высотой 2 вписан ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABC со стороной Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныВ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Π΅Ρ€Ρ…Π½Π΅Π³ΠΎ основания вписан ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A1B1C1 Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ ΠΏΠΎΠ²Π΅Ρ€Π½ΡƒΡ‚ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC Π½Π° ΡƒΠ³ΠΎΠ» 60Β°.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABB1C1 β€” ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ.

Π°) Рассмотрим ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпо ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ, ΠΎΠ½ Ρ€Π°Π²Π΅Π½ 60Β°. ΠŸΡ€ΠΈ этом Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныкак Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π² равностороннСм Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅. Π—Π½Π°Ρ‡ΠΈΡ‚, ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныравСн 180Β° ΠΈΠ»ΠΈ, ΠΈΠ½Ρ‹ΠΌΠΈ словами, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнытаким ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны— ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ. ΠŸΡƒΡΡ‚ΡŒ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ, B’ β€” проСкция Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнына Π½ΠΈΠΆΠ½Π΅Π΅ основаниС. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныотрСзок Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны— Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡƒΠ³ΠΎΠ» ABB’ β€” прямой. Π’ΠΎΠ³Π΄Π°, ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎ Ρ‚Ρ€Π΅Ρ… пСрпСндикулярах, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныа Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны— ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ.

Π±) Π’Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π±ΠΈΡ‚ΡŒ Π½Π° Π΄Π²Π΅ Ρ€Π°Π²Π½Ρ‹Ρ… Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, ΠΎΠ±Ρ‰ΠΈΠΌ основаниСм ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… являСтся ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныа Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ β€” Ρ‚ΠΎΡ‡ΠΊΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠžΠ΄Π½Π° ΠΈΠ· сторон основания β€” сторона Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π’Ρ‚ΠΎΡ€ΡƒΡŽ сторону Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΈΠ· ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныявляСтся ΠΊΠ°Ρ‚Π΅Ρ‚ΠΎΠΌ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныс ΠΊΠ°Ρ‚Π΅Ρ‚ΠΎΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныоткуда Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныВаким ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныа Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠžΡΡ‚Π°Π»ΠΎΡΡŒ Π½Π°ΠΉΡ‚ΠΈ высоты ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄.

Рассмотрим осСвоС сСчСниС Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпроходящСС Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠŸΡƒΡΡ‚ΡŒ MN β€” линия Π΅Π³ΠΎ пСрСсСчСния с ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныгдС M β€” сСрСдина AB, Π° N β€” Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠžΠΏΡƒΡΡ‚ΠΈΠΌ Π½Π° MN ΠΈΠ· Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныпСрпСндикуляр Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныдокаТСм, Ρ‡Ρ‚ΠΎ это высота ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ Π΅Π΅.

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ AH Π»Π΅ΠΆΠΈΡ‚ Π² плоскости Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнызначит, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны(ΠΏΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ), Ρ‚ΠΎΠ³Π΄Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныи являСтся высотой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

Π’ΠΎΡ‡ΠΊΠ° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныявляСтся Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π²Π΅Ρ€Ρ…Π½Π΅Π³ΠΎ основания, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныа Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныа Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярнытогда Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныто Π΅ΡΡ‚ΡŒ, ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°, ΠΈΠΌΠ΅Π΅ΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныоткуда Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π’ΠΎΠ³Π΄Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

ΠžΡ‚Π²Π΅Ρ‚: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅Π±Ρ€Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *