Докер для чайников что такое

Изучаем Docker, часть 1: основы

Технологии контейнеризации приложений нашли широкое применение в сферах разработки ПО и анализа данных. Эти технологии помогают сделать приложения более безопасными, облегчают их развёртывание и улучшают возможности по их масштабированию. Рост и развитие технологий контейнеризации можно считать одним из важнейших трендов современности.

Docker — это платформа, которая предназначена для разработки, развёртывания и запуска приложений в контейнерах. Слово «Docker» в последнее время стало чем-то вроде синонима слова «контейнеризация». И если вы ещё не пользуетесь Docker, но при этом работаете или собираетесь работать в сферах разработки приложений или анализа данных, то Docker — это то, с чем вы непременно встретитесь в будущем.

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Если вы пока не знаете о том, что такое Docker, сейчас у вас есть шанс сделать первый шаг к пониманию этой платформы. А именно, освоив этот материал, вы разберётесь с основами Docker и попутно приготовите пиццу.

Метафоры и Docker

Мы постоянно сталкиваемся с метафорами. Если заглянуть в словарь Ожегова, то окажется, что метафора — это «скрытое образное сравнение, уподобление одного предмета, явления другому». Метафоры помогают нам ухватывать суть новых для нас явлений. Например, виртуальные контейнеры можно сравнить с обычными пластиковыми контейнерами. Такое сравнение, через сопоставление уже известных нам свойств обычных контейнеров со свойствами виртуальных контейнеров, поможет сначала с ними познакомиться, а потом и понять их сущность.

Как вы понимаете, мы собираемся начать разговор о Docker с понятия «контейнер».

Контейнер

Как и обычный пластиковый контейнер, контейнер Docker обладает следующими характеристиками:

Живые организмы

Ещё один подход к размышлениям о контейнерах Docker заключается в сравнении их с экземплярами живых организмов. «Экземпляр» — это нечто, существующее в некоей форме. Это не просто код. Это код, который стал причиной существования чего-то большего, чем он сам, чего-то, образно говоря, живого. Как и другие живые организмы, экземпляры контейнеров появляются на свет, живут и умирают.

Монстр, вызванный к жизни

Контейнеры Docker — это вызванные к жизни образы Docker.

Программное обеспечение

Контейнеры Docker можно сравнивать не только с обычными контейнерами или с живыми организмами. Их можно сравнить и с программами. В конце концов, контейнеры — это программы. И, на фундаментальном уровне, контейнер представляет собой набор инструкций, который выполняется на некоем процессоре, обрабатывая какие-то данные.

Контейнер — это программа

Во время выполнения контейнера Docker внутри него обычно выполняется какая-то программа. Она выполняет в контейнере некие действия, то есть — делает что-то полезное.

Например, код, который работает в контейнере Docker, возможно, отправил на ваш компьютер тот текст, который вы сейчас читаете. Вполне возможно и то, что именно код, выполняющийся в контейнере Docker, принимает голосовые команды, которые вы даёте Amazon Alexa, и преобразует их в инструкции для ещё каких-нибудь программ, работающих в других контейнерах.

Благодаря использованию Docker можно, на одном и том же компьютере, одновременно запускать множество контейнеров. И, как и любые другие программы, контейнеры Docker можно запускать, останавливать, удалять. Можно исследовать их содержимое и создавать их.

Концепции Docker

▍Виртуальные машины

Предшественниками контейнеров Docker были виртуальные машины. Виртуальная машина, как и контейнер, изолирует от внешней среды приложение и его зависимости. Однако контейнеры Docker обладают преимуществами перед виртуальными машинами. Так, они потребляют меньше ресурсов, их очень легко переносить, они быстрее запускаются и приходят в работоспособное состояние. В этом материале можно найти подробное сравнение контейнеров и виртуальных машин.

▍Образ контейнера Docker

Выше мы уже говорили об «образах». Что это такое? Хороший вопрос. То, что в терминологии Docker называется «образом», или, по-английски, «image», это совсем не то же самое, что, например, фотография (это — одно из значений слова «image»).

Образы Docker — это не фотографии

Образы контейнеров Docker можно сравнить с чертежами, с формочками для печенья, или с пресс-формами для изготовления пластиковых изделий. Образы — это неизменные шаблоны, которые используются для создания одинаковых контейнеров.

Образы контейнеров Docker похожи на формочки для печенья

В образе контейнера Docker содержится образ базовой операционной системы, код приложения, библиотеки, от которого оно зависит. Всё это скомпоновано в виде единой сущности, на основе которой можно создать контейнер.

▍Файл Dockerfile

Файл Dockerfile содержит набор инструкций, следуя которым Docker будет собирать образ контейнера. Этот файл содержит описание базового образа, который будет представлять собой исходный слой образа. Среди популярных официальных базовых образов можно отметить python, ubuntu, alpine.

И, наконец, в образе может содержаться, поверх всех остальных, ещё один тонкий слой, данные, хранящиеся в котором, поддаются изменению. Это — небольшой по объёму слой, содержащий программу, которую планируется запускать в контейнере.

▍Контейнер Docker

▍Репозиторий контейнеров

Если вы хотите дать возможность другим людям создавать контейнеры на основе вашего образа, вы можете отправить этот образ в облачное хранилище. Самым крупным подобным хранилищем является репозиторий Docker Hub. Он используется при работе с Docker по умолчанию.

Мы уже довольно много всего обсудили. Пришло время собрать всё это вместе и сравнить работу с контейнерами Docker с приготовлением пиццы.

Готовим с Docker

Готовая пицца — это контейнер

Духовка — это платформа Docker

Духовка, в которой готовится пицца, напоминает платформу Docker. Духовку устанавливают на кухне, с её помощью можно готовить еду. Точно так же Docker устанавливают на компьютере для того, чтобы «готовить» контейнеры.

Духовку, если она электрическая, включают, поворачивая ручку регулятора температуры. Команда docker run image_name — это нечто вроде такого регулятора температуры, «поворот» которого приводит к тому, что система создаёт и запускает контейнер.

Готовая пицца — это и есть контейнер Docker.

А есть пиццу — значит пользоваться приложением, запущенным в контейнере.

Как и приготовление пиццы, подготовка к работе контейнеров Docker занимает некоторое время, но в финале и в том и в другом случаях получается что-то вкусное.

Итоги

Здесь мы, на концептуальном уровне, рассмотрели основы Docker. Надеемся, приведённые здесь сравнения помогли вам разобраться в том, что такое Docker, и ощутить ценность метафор в деле освоения новых технологий.

Уважаемые читатели! Эта публикация представляет собой перевод первой статьи из серии учебных материалов по Docker. По словам автора, всего планируется выпустить 5 таких материалов. Уже готовы вторая, третья и четвёртая части. Подскажите нам, стоит ли переводить следующие статьи этой серии?

Источник

Docker для самых маленьких автоматизаторов

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Сам я пока еще изучаю детали. Так что воспринимайте статью как своеобразный шеринг знаний. Я рассказываю о том, что попробовал и мне понравилось. Обсуждение конкретных инструментов и того, как автоматизатору со своей частью работы встроиться в процесс сборки, оставим на будущее.

Что такое CI/CD

Это одна из практик devops. Она позволяет разработчикам сосредоточиться на реализации бизнес-требований, качестве кода и безопасности.

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

На нашем проекте Android-приложения это выглядит так. Функциональные тесты под один спринт на следующих итерациях становятся регрессионными и показывают, не задели ли очередные изменения в приложении другие его части. Всего в проекте около 700 регрессионных тестов. Если какой-то из них не проходит, сборка фейлится и не деплоится в продакшн. Так мы можем довольно быстро и безболезненно деплоить.

И все это выполняется автоматически по скриптам. Никаких ручных действий и танцев с бубном. Если на каком-то этапе тесты не проходят, мы даже не деплоим. В итоге сокращается время доставки изменений. Сборка приложения занимает минут 20, еще столько же проходит набор регрессионных тестов в 20-30 потоков. Еще 20 минут требуется на деплой. В итоге мы за час проходим весь процесс от билда до деплоя.

Docker

Важную роль в нашем процессе работы играет Docker.

Я воспринимаю Docker как контейнер, который может жить где угодно. Я могу поставить контейнер, накидать туда все, что хочу, и перетаскивать его целиком. Что-то оттуда доставать, что-то туда класть.

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Поясню, как это происходит, на примере случая с тестовым заданием, которое мы даем ручным тестировщикам. Локально тестовое задание у меня отлично запускалось, но не так давно один из кандидатов пожаловался, что у себя запустить не может. Я сообщил все необходимые версии, но задание все равно не запустилось. Выяснилось, что несмотря на попытки кандидата установить нужную версию Java, использовалась другая. Это распространенная ситуация. Но если бы мы завернули тестовый сервис в некую защищенную оболочку, которая работает почти везде, и отдавали бы кандидатам образы, все было бы проще. За редким исключением кандидату было бы достаточно предустановить Docker. Это в разы сократило бы потраченное время.

Но вернемся к Docker.

Dockerfile

В docker-файле используются разного рода инструкции. Вот список тех, что мы используем в повседневной работе (но это не все инструкции):

Управление контейнерами и образами

Общая схема команды для управления контейнерами выглядит следующим образом:

Вместо my_command можно подставить:

Схема команды для управления образами:

Вместо my_command1 можно подставить:

Немного практики

Предположим, у нас есть сервис, который запускается командой:

Давайте попробуем добавить его в контейнер, а потом запустить тесты снаружи или внутри контейнера.

Создадим образ

Для начала в корневой папке проекта создадим текстовый docker-файл. Я нашел базовый образ с уже предустановленной java8 и maven. Возьмем его за основу инструкцией FROM и обозначим рабочую директорию:

Скопируем все файлы нашего проекта в контейнер:

И запустим команду, которая установит Allure:

Здесь мы как раз объединили все в одну большую RUN команду, используя символ переноса строки для удобства чтения. Один RUN создает только один слой вместо нескольких.

Мы качаем архив с Allure, распаковываем его (в данном случае в каталоге allure).

Можно сохранять docker-файл и создавать образ:

Мы не указываем путь к docker-файл, поскольку изначально разместили его в корневом каталоге.

При создании образа ему будет присвоен ID.

Создадим контейнер

При выполнении этой команды некоторое время потребуется на подтягивание разных зависимостей.

Запустим автотесты

Итак, сервис запущен в контейнере. Чтобы запустить автотесты снаружи контейнера, которые в нашем случае присутствуют на локальном порту 28080, необходимо использовать команду:

В итоге мы получаем результат в allure-results.

Тесты можно запустить и внутри контейнера. Для этого нам надо попасть внутрь при помощи команды, которая открывает bash:

Запускаем наши тесты внутри контейнера:

В рабочей директории rest-client (мы ее обозначили рабочей в dockerfile) есть папка allure. Когда тесты пройдут, внутри появится папка target. Для получения отчета Allure на локальном хосте можно запустить внутри контейнера Allure Report:

Результаты будут доступны на localhost:28081.

Мы создали докер-образ, запустили на его основе докер-контейнер, пробросили порты. Мы получили доступ к сервису из контейнера на хост-машину и можем запускать тесты как локально, так и непосредственно в контейнере. Также мы запустили Allure Report на определенном порту и получили доступ к результатам локально.

Источник

Docker. Зачем и как

Есть множество прекрасных публикаций для тех, кто уже пользуется docker-ом. Есть хорошие статьи для тех, кто хочет этому научиться. Я пишу для тех, кто не только не знает, что такое docker, но и не уверен стоит ли ему это знать.

Я сознательно опускаю некоторые технические подробности, а кое где допускаю упрощения. Если вы увидите, что docker – то, что вам нужно, вы легко найдете более полную и точную информацию в других статьях.

Начну я с описания нескольких типичных проблем.

Проблемы

Первая проблема — как передать продукт клиенту.

Предположим у вас есть серверный проект, который вы закончили и теперь его необходимо передать пользователю. Вы готовите много разных файликов, скриптов и пишите инструкцию по установке. А потом тратите уйму времени на решения проблем клиента вроде: «у меня ничего не работает», «ваш скрипт упал на середине — что теперь делать», «я перепутал порядок шагов в инструкции и теперь не могу идти дальше» и т. п.

Всё усугубляется если продукт тиражируемый и вместо одного клиента у вас сотни или тысячи покупателей. И становится еще сложнее, если вспомнить о необходимости установки новых версий продукта.

Вторая проблема — тиражируемость. Пусть вам нужно поднять 5 (или 50) почти одинаковых серверов. Делать это вручную долго, дорого и подвержено ошибкам.

Наконец, третья проблема — переиспользуемость. Предположим у вас есть отдел, который делает браузерные игры. Предположим, что их у вас уже несколько. И все они используют один и тот же технологический стэк (например — java-tomcat-nginx-postgre). Но при этом, чтобы поставить новую игру вы вынуждены заново подготавливать на новом сервере почти одинаковую конфигурацию. Вы не можете просто так взять и сказать — «хочу сервер, как в игре странники но только с другим веб архивом»

Обычные решения

Как обычно решаются эти проблемы.

Установочный скрипт

Первый подход я уже упомянул — вы можете написать скрипт, который установит всё, что вам нужно и запускать его на всех нужных серверах. ( Скрипт может быть как простым sh файлом, так и чем-то сложным, созданным с использованием специальных инструментов).

Недостатки этого подхода — хрупкость и неустойчивость к ошибкам. Как бы хорошо не был написан скрипт, рано или поздно на какой-то машине он упадёт. И после этого падения машина фактически окажется «испорченной» — просто так «откатить» те действия, которые скрипт успел выполнить, у вашего клиента не получится.

Облачные сервисы

Второй подход — использование облачных сервисов. Вы вручную устанавливаете на виртуальный сервер всё, что вам нужно. Затем делаете его image. И далее клонируете его столько раз, сколько вам надо.

Недостатка здесь два. Во-первых, vendor-lock-in. Вы не можете запускать свое решение вне выбранного облака, что не всегда удобно и может привести к потерям несогласных с этим выбором клиентов. Во-вторых, облака медленны. Виртуальные (и даже «bare-metal») сервера предоставляемые облаками на сегодняшний день сильно уступают по производительности dedicated серверам.

Виртуальные машины

Третий подход — использование виртуальных машин. Здесь тоже есть недостатки:

Размер — не всегда удобно качать образ виртуальной машины, который может быть довольно большим. При этом, любое изменение внутри образа виртуальной машины требует скачать весь образ заново.

Сложное управление совместным использованием серверных ресурсов — не все виртуальные машины вообще поддерживают совместное использование памяти или CPU. Те что поддерживают, требуют тонкой настройки.

Подход докера — контейнеризация

И вот тут появляется docker, в котором

Как работает docker

Создание образа

Сначала создается docker image (или образ). Он создается при помощи скрипта, который вы для этого пишете.
Образы наследуются и, обычно, для создания своего первого образа мы берём готовый образ и наследуемся от него.
Чаще всего мы берем образ в котором содержится та или иная версия linux. Скрипт тогда начинается как-то так:

Кроме этого, мы можем копировать в наш образ любые локальные файлы при помощи директивы COPY.

Докер поддерживает гораздо больше различных директив. Например, директива USER roman говорит докеру что все следующие директивы нужно выполнять из под пользователя roman. А директива ENTRYPOINT [“/opt/tomcat/catalina.sh”] задает исполняемый файл, который будет запускаться при старте.

Я не буду перечислять все остальные директивы — в этом нет смысла. Здесь главное — принцип: вы создаёте вот такой скрипт, называете его Dockerfile и запускаете команду docker build, docker выполняет скрипт и создает image.

Если в процессе возникают какие-то ошибки, докер о них сообщает и вы их исправляете. То есть исправление скрипта происходит на этапе создания image. На этапе установки скрипт уже не используется.

Создание контейнера

Когда у вас уже есть docker image вы можете создать из него контейнер на любом физическом сервере, где установлен докер. Если image – это тиражируемый образ некоторой «машины», то container это уже сама «машина», которую можно запускать и останавливать.

Важный момент — при создании контейнера из image, его можно параметризовать. Вы можете передавать докеру переменные окружения, которые он использует при создании контейнера из image. Так вы сможете создавать немного разные машины из одного образа. Например, передать образу web-сервера его доменное имя.

Хорошей практикой в докере считается «упаковка» в один контейнер ровно одного постоянно работающего серверного процесса. Как я уже упоминал, этот процесс работает на уровне физического сервера и честно регулируется установленной там операционной системой. Поэтому, в отличие от виртуальных машин, контейнеры докера не требуют специального управления памятью и процессорами. Использование ресурсов становится простым и эффективным.

Union filesystem

Ок — память и процессор используется эффективно. А как насчёт файловой системы? Ведь если у каждого контейнера докера своя собственная копия операционной системы, то мы получим ту же проблему, что и с виртуальными машинами — тяжеловесные образы, которые содержат одно и тоже.

На самом деле в докере это не так. Если вы используете 100500 контейнеров, основанных на одном и том же образе операционной системы, то файлы этой системы будут скачаны докером ровно один раз. Это достигается за счёт использования докером union file system.

Union file system состоит из слоёв (layers). Слои как бы наложены друг на друга. Некоторые слои защищены от записи. Например, все наши контейнеры используют общие защищенные от записи слои, в которых находятся неизменяемые файлы операционной системы.

Для изменяемых файлов каждый из контейнеров будет иметь собственный слой. Естественно, докер использует такой подход не только для операционной системы, но и для любых общих частей контейнеров, которые были созданы на основе общих «предков» их образов.

Container registry

Получается, что docker image состоит из слоёв. И хорошо было бы уметь скачивать на наш сервер только те слои, которых на нём пока нет. Иначе для установки 100 контейнеров, основанных на Ubuntu мы скачаем Ubuntu внутри их образов 100 раз. Зачем?

Хорошая новость в том, что докер решает эту проблему. Докер предоставляет специальный сервис, называемый docker registry. Docker registry предназначен для хранения и дистрибуции готовых образов. Собрав новый образ (или новую версию образа) вы можете закачать его в docker registry. Соответственно, потом его можно скачать оттуда на любой сервер. Главная фишка здесь в том, что физически качаться будут только те слои, которые нужны.

Например, если вы создали новую версию образа, в котором поменяли несколько файлов, то в registry будут отправлены только слои, содержащие эти файлы.

Аналогично, если сервер качает из registry какой-то образ, скачаны будут только слои, отсутствующие на сервере.
Docker registry существует и как общедоступный сервис и как open source проект, доступный для скачивания и установки на собственной инфрастуктуре.

Использование контейнеров

Созданные контейнеры можно запускать, останавливать, проверять их статус и т д. При создании контейнера можно дополнительно передать докеру некоторые параметры. Например, попросить докер автоматически рестартовать контейнер, если тот упадёт.

Взаимодействие между контейнерами

Если контейнеров на сервере несколько, управлять ими вручную становится проблематично. Для этого есть технология docker compose. Она существует поверх докера и просто позволяет управлять контейнерами на основе единого конфигурационного файла, в котором описаны контейнеры, их параметры и их взаимосвязи (например контейнер A имеет право соединяться с портом 5432 контейнера B)

Выводы

Таким образом докер очень хорошо подходит для решения перечисленных выше задач:

Источник

Полное практическое руководство по Docker: с нуля до кластера на AWS

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Содержание

Вопросы и ответы

Что такое Докер?

Определение Докера в Википедии звучит так:

программное обеспечение для автоматизации развёртывания и управления приложениями в среде виртуализации на уровне операционной системы; позволяет «упаковать» приложение со всем его окружением и зависимостями в контейнер, а также предоставляет среду по управлению контейнерами.

Ого! Как много информации. Простыми словами, Докер это инструмент, который позволяет разработчикам, системными администраторам и другим специалистам деплоить их приложения в песочнице (которые называются контейнерами), для запуска на целевой операционной системе, например, Linux. Ключевое преимущество Докера в том, что он позволяет пользователям упаковать приложение со всеми его зависимостями в стандартизированный модуль для разработки. В отличие от виртуальных машин, контейнеры не создают такой дополнительной нагрузки, поэтому с ними можно использовать систему и ресурсы более эффективно.

Что такое контейнер?

Стандарт в индустрии на сегодняшний день — это использовать виртуальные машины для запуска приложений. Виртуальные машины запускают приложения внутри гостевой операционной системы, которая работает на виртуальном железе основной операционной системы сервера.

Виртуальные машины отлично подходят для полной изоляции процесса для приложения: почти никакие проблемы основной операционной системы не могут повлиять на софт гостевой ОС, и наоборот. Но за такую изоляцию приходится платить. Существует значительная вычислительная нагрузка, необходимая для виртуализации железа гостевой ОС.

Контейнеры используют другой подход: они предоставляют схожий с виртуальными машинами уровень изоляции, но благодаря правильному задействованию низкоуровневых механизмов основной операционной системы делают это с в разы меньшей нагрузкой.

Почему я должен использовать их?

Взлет Докера был по-настоящему эпичным. Не смотря на то, что контейнеры сами по себе — не новая технология, до Докера они не были так распространены и популярны. Докер изменил ситуацию, предоставив стандартный API, который сильно упростил создание и использование контейнеров, и позволил сообществу вместе работать над библиотеками по работе с контейнерами. В статье, опубликованной в The Register в середине 2014 говорится, что Гугл поддерживает больше двух миллиардов контейнеров в неделю.

Google Trends для слова ‘Docker’
Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

В дополнение к продолжительному росту Докера, компания-разработчик Docker Inc. была оценена в два с лишним миллиарда долларов! Благодаря преимуществам в эффективности и портативности, Докер начал получать все больше поддержки, и сейчас стоит во главе движения по контейнеризации (containerization). Как современные разработчики, мы должны понять этот тренд и выяснить, какую пользу мы можем получить из него.

Чему меня научит это пособие?

Это единое и полное пособие по всем аспектам работы с Докером. Кроме разъяснения мифов о Докере и его экосистеме, оно позволит вам получит небольшой опыт по сборке и деплою собственных веб-приложений в облаке. Мы будем использовать Amazon Web Services для деплоя статичных сайтов, и два динамических веб-приложения задеплоим на EC2 с использованием Elastic Beanstalk и Elastic Container Service. Даже если вы никогда ничего не деплоили, это пособие даст вам все необходимое.

Как использовать этот документ

Этот документ содержит несколько разделов, каждый из которых посвящен определенному аспекту Докера. В каждом разделе мы будем вводить команды или писать код. Весь код доступен в репозитории на Гитхабе.

Введение

Внимание: В этом пособии используется версия Докера 1.12.0-rc2. Если вы столкнулись с несовместимостью, пожалуйста, отправьте issue. Спасибо!

Пре-реквизиты

Все, что нужно для прохождения этого пособия — это базовые навыки с командной строкой и текстовым редактором. Опыт разработки веб-приложений будет полезен, но не обязателен. В течение работы мы столкнемся с несколькими облачными сервисами. Вам понадобится создать аккаунт на этих сайтах:

Настройка компьютера

Установка и настройка всех необходимых инструментов может быть тяжелой задачей, но, к счастью, Докер стал довольно стабильным, и установка и запуск его на любой ОС стало очень простой задачей. Итак, установим Докер.

Докер

Проверим, все ли установлено корректно:

Python

Python обычно предустановлен на OS X и на большинстве дистрибутивов Linux. Если вам нужно установить Питон, то скачайте установщик здесь.

Мы будем использовать pip для установки пакетов для нашего приложения. Если pip не установлен, то скачайте версию для своей системы.

Для проверки запустите такую команду:

Java (не обязательно)

1.0 Играем с Busybox

Для начала, запустите следующую команду:

1.1 Docker Run

Отлично! Теперь давайте запустим Докер-контейнер с этим образом. Для этого используем волшебную команду docker run :

Ура, наконец-то какой-то вывод. В нашем случае клиент Докера послушно запустил команду echo внутри контейнера, а потом вышел из него. Вы, наверное, заметили, что все произошло очень быстро. А теперь представьте себе, как нужно загружать виртуальную машину, запускать в ней команду и выключать ее. Теперь ясно, почему говорят, что контейнеры быстрые!

Теперь виден список всех контейнеров, которые мы запускали. В колонке STATUS можно заметить, что контейнеры завершили свою работу несколько минут назад.

Вам, наверное, интересно, как запустить больше одной команды в контейнере. Давайте попробуем:

При удалении идентификаторы будут снова выведены на экран. Если нужно удалить много контейнеров, то вместо ручного копирования и вставления можно сделать так:

1.2 Терминология

В предыдущем разделе мы использовали много специфичного для Докера жаргона, и многих это может запутать. Перед тем, как продолжать, давайте разберем некоторые термины, которые часто используются в экосистеме Докера.

2.0 Веб-приложения и Докер

2.1 Статические сайты

Давайте начнем с малого. Вначале рассмотрим самый простой статический веб-сайт. Скачаем образ из Docker Hub, запустим контейнер и посмотрим, насколько легко будет запустить веб-сервер.

Так как образа не существует локально, клиент сначала скачает образ из регистра, а потом запустит его. Если все без проблем, то вы увидите сообщение Nginx is running. в терминале. Теперь сервер запущен. Как увидеть сайт в действии? На каком порту работает сервер? И, что самое важное, как напрямую достучаться до контейнера из хост-контейнера?

В нашем случае клиент не открывает никакие порты, так что нужно будет перезапустить команду docker run чтобы сделать порты публичными. Заодно давайте сделаем так, чтобы терминал не был прикреплен к запущенному контейнеру. В таком случае можно будет спокойно закрыть терминал, а контейнер продолжит работу. Это называется detached mode.

Откройте http://localhost:32769 в своем браузере.

Замечание: Если вы используете docker-toolbox, то, возможно, нужно будет использовать docker-machine ip default чтобы получить IP-адрес.

Также можете обозначить свой порт. Клиент будет перенаправлять соединения на него.

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Чтобы остановить контейнер запустите docker stop и укажите идентификатор (ID) контейнера.

Согласитесь, все было очень просто. Чтобы задеплоить это на реальный сервер, нужно просто установить Докер и запустить команду выше. Теперь, когда вы увидели, как запускать веб-сервер внутри образа, вам, наверное, интересно — а как создать свой Докер-образ? Мы будем изучать эту тему в следующем разделе.

2.2 Образы

Мы касались образов ранее, но в этом разделе мы заглянем глубже: что такое Докер-образы и как создавать собственные образы. Наконец, мы используем собственный образ чтобы запустить приложение локально, а потом задеплоим его на AWS, чтобы показать друзьям. Круто? Круто! Давайте начнем.

Это список образов, которые я скачал из регистра, а также тех, что я сделал сам (скоро увидим, как это делать). TAG — это конкретный снимок или снэпшот (snapshot) образа, а IMAGE ID — это соответствующий уникальный идентификатор образа.

Важно понимать разницу между базовыми и дочерними образами:

Существуют официальные и пользовательские образы, и любые из них могут быть базовыми и дочерними.

2.3 Наш первый образ

Теперь, когда мы лучше понимаем, что такое образы и какие они бывают, самое время создать собственный образ. Цель этого раздела — создать образ с простым приложением на Flask. Для этого пособия я сделал маленькое приложение, которое выводит случайную гифку с кошкой. Ну, потому что, кто не любит кошек? Склонируйте этот репозиторий к себе на локальную машину.

Вначале давайте проверим, что приложение работает локально. Войдите в директорию flask-app командой cd и установите зависимости.

Если все хорошо, то вы увидите вывод как в примере выше. Зайдите на http://localhost:5000 чтобы увидеть приложение в действии.

Выглядит отлично, правда? Теперь нужно создать образ с приложением. Как говорилось выше, все пользовательские образы основаны на базовом образе. Так как наше приложение написано на Питоне, нам нужен базовый образ Python 3. В частности, нам нужна версия python:3-onbuild базового образа с Питоном.

Другими словами, версия onbuild включает хелперы, которые автоматизируют скучные процессы запуска приложения. Вместо того, чтобы вручную выполнять эти задачи (или писать скрипты), образы делают все за вас. Теперь у нас есть все ингредиенты для создания своего образа: работающее веб-приложение и базовый образ. Как это сделать? Ответ: использовать Dockerfile.

2.4 Dockerfile

Dockerfile — это простой текстовый файл, в котором содержится список команд Докер-клиента. Это простой способ автоматизировать процесс создания образа. Самое классное, что команды в Dockerfile почти идентичны своим аналогам в Linux. Это значит, что в принципе не нужно изучать никакой новый синтаксис чтобы начать работать с докерфайлами.

Главное предназначение CMD — это сообщить контейнеру какие команды нужно выполнить при старте. Теперь наш Dockerfile готов. Вот как он выглядит:

Последний шаг — запустить образ и проверить его работоспособность (замените username на свой):

Зайдите на указанный URL и увидите приложение в работе.

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Поздравляю! Вы успешно создали свой первый образ Докера!

2.5 Docker на AWS

Что хорошего в приложении, которое нельзя показать друзьям, правда? Так что в этом разделе мы научимся деплоить наше офигенное приложение в облако. Будем использовать AWS Elastic Beanstalk чтобы решить эту задачу за пару кликов. Мы увидим, как с помощью Beanstalk легко управлять и масштабировать наше приложение.

Docker push

Первое, что нужно сделать перед деплоем на AWS это опубликовать наш образ в регистре, чтобы можно было скачивать его из AWS. Есть несколько Docker-регистров (или можно создать собственный). Для начала, давайте используем Docker Hub. Просто выполните:

Если это ваша первая публикация, то клиент попросит вас залогиниться. Введите те же данные, что используете для входа в Docker Hub.

После этого можете посмотреть на свой образ на Docker Hub. Например, вот страница моего образа.

Замечание: один важный момент, который стоит прояснить перед тем, как продолжить — не обязательно хранить образ в публичном регистре (или в любом другом регистре вообще) чтобы деплоить на AWS. Если вы пишете код для следующего многомиллионного стартапа-единорога, то можно пропустить этот шаг. Мы публикуем свой образ чтобы упростить деплой, пропустив несколько конфигурационных шагов.

Теперь наш образ онлайн, и любой докер-клиент может поиграться с ним с помощью простой команды:

Если в прошлом вы мучались с установкой локального рабочего окружения и попытками поделиться своей конфигурацией с коллегами, то понимаете, как круто это звучит. Вот почему Докер — это сила!

Beanstalk

AWS Elastic Beanstalk (EB) это PaaS (Platform as a Service — платформа как сервис) от Amazon Web Services. Если вы использовали Heroku, Google App Engine и т.д., то все будет привычно. Как разработчик, вы сообщаете EB как запускать ваше приложение, а EB занимается всем остальным, в том числе масштабированием, мониторингом и даже апдейтами. В апреле 2014 в EB добавили возможность запускать Докер-контейнеры, и мы будем использовать именно эту возможность для деплоя. У EB очень понятный интерфейс командной строки, но он требует небольшой конфигурации, поэтому для простоты давайте используем веб-интерфейс для запуска нашего приложения.

Чтобы продолжать, вам потребуется работающий аккаунт на AWS. Если у вас его нет, то создайте его. Для этого потребуется ввести данные кредитной карты. Но не волнуйтесь, эта услуга бесплатна, и все, что будет происходить в рамках этого пособия тоже бесплатно.

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Файл довольно понятный, но всегда можно обратиться к официальной документации. Мы указываем название образа, и EB будет использовать его заодно с портом.

К этому моменту инстанс уже должен быть готов. Зайдите на страницу EB и увидите зеленый индикатор успешного запуска приложения.

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Зайдите на указанный URL в браузере и увидите приложение во все красе. Пошлите адрес своим друзьям, чтобы все могли насладиться гифками с кошками.

Поздравляю! Вы задеплоили свое первое Докер-приложение! Может показаться, что было очень много шагов, но с командной утилитой EB можно имитировать функциональность Хероку несколькими нажатиями клавиш. Надеюсь, вы согласитесь, что Докер сильно упрощает процесс и минимизирует болезненные моменты деплоя в облако. Я советую вам почитать документацию AWS про single-container Docker environment чтобы понимать, какие существуют возможности в EB.

В следующей, последней части пособия, мы пойдем немного дальше и задеплоим приложение, приближенное к реальному миру. В нем будет постоянное бэкэнд-хранилище. Поехали!

3.0 Многоконтейнерные окружения

В прошлом разделе мы увидели, как легко и просто запускать приложения с помощью Докера. Мы начали с простого статического сайта, а потом запустили Flask-приложение. Оба варианта можно было запускать локально или в облаке, несколькими командами. Общая черта этих приложений: каждое из них работало в одном контейнере.

Если у вас есть опыт управления сервисами в продакшене, то вы знаете, что современные приложения обычно не такие простые. Почти всегда есть база данных (или другой тип постоянного хранилища). Системы вроде Redis и Memcached стали практически обязательной частью архитектуры веб-приложений. Поэтому, в этом разделе мы научимся «докеризировать» приложения, которым требуется несколько запущенных сервисов.

В частности, мы увидим, как запускать и управлять многоконтейнерными Докер-окружениями. Почему нужно несколько контейнеров, спросите вы? Ну, одна из главных идей Докера в том, что он предоставляет изоляцию. Идея совмещения процесса и его зависимостей в одной песочнице (называемой контейнером) и делает Докер мощным инструментом.

Аналогично тому, как приложение разбивают на части, стоит содержать отдельные сервисы в отдельных контейнерах. Разным частям скорее всего требуются разные ресурсы, и требования могут расти с разной скоростью. Если мы разделим эти части и поместим в разные контейнеры, то каждую часть приложения можно строить, используя наиболее подходящий тип ресурсов. Это также хорошо совмещается с идеей микро сервисов. Это одна из причин, по которой Докер (и любая другая технология контейнеризации) находится на передовой современных микро сервисных архитектур.

3.1 SF Food Trucks

Приложение, которое мы переведем в Докер, называется SF Food Trucks (к сожалению, сейчас приложение уже не работает публично — прим. пер.). Моя цель была сделать что-то полезное (и похожее на настоящее приложение из реального мира), что-то, что использует как минимум один сервис, но не слишком сложное для этого пособия. Вот что я придумал.

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Бэкэнд приложения написано на Питоне (Flask), а для поиска используется Elasticsearch. Как и все остальное в этом пособии, код находится на Github. Мы используем это приложение, чтобы научиться запускать и деплоить много-контейнерное окружение.

Теперь, когда вы завелись (надеюсь), давайте подумаем, как будет выглядеть этот процесс. В нашем приложении есть бэкэнд на Flask и сервис Elasticsearch. Очевидно, что можно поделить приложение на два контейнера: один для Flask, другой для Elasticsearch (ES). Если приложение станет популярным, то можно будет добавлять новые контейнеры в нужном месте, смотря где будет узкое место.

Отлично, значит нужно два контейнера. Это не сложно, правда? Мы уже создавали Flask-контейнер в прошлом разделе. А для Elasticsearch… давайте посмотрим, есть ли что-нибудь в хабе:

Замечание: если оказывается, что существующий образ не подходит для вашей задачи, то спокойно создавайте свой образ на основе другого базового образа. В большинстве случаем, для образов на Docker Hub можно найти соответствующий Dockerfile на Github. Почитайте существующий Докерфайлы — это один из лучших способов научиться делать свои образы.

Наш Dockerfile для Flask-приложения выглядит следующим образом:

Тут много всего нового. Вначале указан базовый образ Ubuntu LTS, потом используется пакетный менеджер apt-get для установки зависимостей, в частности — Python и Node. Флаг yqq нужен для игнорирования вывода и автоматического выбора «Yes» во всех местах. Также создается символическая ссылка для бинарного файла node. Это нужно для решения проблем обратной совместимости.

Наконец, можно собрать образ и запустить контейнер (замените prakhar1989 на свой username ниже).

При первом запуске нужно будет больше времени, так как клиент Докера будет скачивать образ ubuntu, запускать все команды и готовить образ. Повторный запуск docker build после последующих изменений будет практически моментальным. Давайте попробуем запустить приложение

Упс! Наше приложение не смогло запуститься, потому что оно не может подключиться к Elasticsearch. Как сообщить одному контейнеру о другом и как заставить их взаимодействовать друг с другом? Ответ — в следующей секции.

3.2 Сети Docker

Перед тем, как обсудить возможности Докера для решения описанной задачи, давайте посмотрим на возможные варианты обхода проблемы. Думаю, это поможет нам оценить удобство той функциональности, которую мы вскоре изучим.

Нужно сообщить Flask-контейнеру, что контейнер ES запущен на хосте 0.0.0.0 (порт по умолчанию 9200 ), и все заработает, да? К сожалению, нет, потому что IP 0.0.0.0 это адрес для доступа к контейнеру с хост-машины, то есть с моего Мака. Другой контейнер не сможет обратиться по этому адресу. Ладно, если не этот адрес, то какой другой адрес нужно использовать для работы с контейнером ES? Рад, что вы спросили.

Это хороший момент, чтобы изучить работу сети в Докере. После установки, Докер автоматически создает три сети:

Сеть bridge — это сеть, в которой контейнеры запущены по умолчанию. Это значит, что когда я запускаю контейнер ES, он работает в этой сети bridge. Чтобы удостовериться, давайте проверим:

Не смотря на то, что мы нашли способ наладить связь между контейнерами, существует несколько проблем с этим подходом:

Во-первых, давайте создадим свою сеть:

Команда network create создает новую сеть bridge. Нам сейчас нужен именно такой тип. Существуют другие типы сетей, и вы можете почитать о них в официальной документации.

Зайдите на http://0.0.0.0:5000, и увидите приложение в работе. Опять же, может показаться, что было много работы, но на самом деле мы ввели всего 4 команды чтобы с нуля дойти до работающего приложения. Я собрал эти команды в bash-скрипт.

Теперь представьте, что хотите поделиться приложением с другом. Или хотите запустить на сервере, где установлен Докер. Можно запустить всю систему с помощью одной команды!

Вот и все! По-моему, это невероятно крутой и мощный способ распространять и запускать приложения!

Docker Links

3.3 Docker Compose

До этого момента мы изучали клиент Докера. Но в экосистеме Докера есть несколько других инструментов с открытым исходным кодом, которые хорошо взаимодействуют с Докером. Некоторые из них это:

В этом разделе мы поговорим об одном из этих инструментов — Docker Compose, и узнаем, как он может упростить работу с несколькими контейнерами.

Первый комментарий на самом деле неплохо объясняет, зачем нужен Fig и что он делает:

На самом деле, смысл Докера в следующем: запускать процессы. Сегодня у Докера есть неплохое API для запуска процессов: расшаренные между контейнерами (иными словами, запущенными образами) разделы или директории (shared volumes), перенаправление портов с хост-машины в контейнер, вывод логов, и так далее. Но больше ничего: Докер сейчас работает только на уровне процессов.
Не смотря на то, что в нем содержатся некоторые возможности оркестрации нескольких контейнеров для создания единого «приложения», в Докере нет ничего, что помогало бы с управлением такими группами контейнеров как одной сущностью. И вот зачем нужен инструмент вроде Fig: чтобы обращаться с группой контейнеров как с единой сущностью. Чтобы думать о «запуске приложений» (иными словами, «запуске оркестрированного кластера контейнеров») вместо «запуска контейнеров».

Оказалось, что многие пользователи Докера согласны с такими мыслями. Постепенно, Fig набрал популярность, Docker Inc. заметили, купили компанию и назвали проект Docker Compose.

Давайте посмотрим, сможем ли мы создать файл docker-compose.yml для нашего приложения SF-Foodtrucks и проверим, способен ли он на то, что обещает.

Замечание: Нужно находиться в директории с файлом docker-compose.yml чтобы запускать большую часть команд Compose.

Отлично! Файл готов, давайте посмотрим на docker-compose в действии. Но вначале нужно удостовериться, что порты свободны. Так что если у вас запущены контейнеры Flask и ES, то пора их остановить:

Перейдите по IP чтобы увидеть приложение. Круто, да? Всего лишь пара строк конфигурации и несколько Докер-контейнеров работают в унисон. Давайте остановим сервисы и перезапустим в detached mode:

Не удивительно, но оба контейнера успешно запущены. Откуда берутся имена? Их Compose придумал сам. Но что насчет сети? Его Compose тоже делаем сам? Хороший вопрос, давайте выясним.

Для начала, остановим запущенные сервисы. Их всегда можно вернуть одной командой:

Класс! Теперь в этом чистом состоянии можно проверить, способен ли Compose на волшебство.

Пока все хорошо. Проверим, создались ли какие-нибудь сети:

На этом наш тур по Docker Compose завершен. С этим инструментом можно ставить сервисы на паузу, запускать отдельные команды в контейнере и даже масштабировать систему, то есть увеличивать количество контейнеров. Также советую изучать некоторые другие примеры использования Docker Compose.

Надеюсь, я продемонстрировал как на самом деле просто управлять многоконтейнерной средой с Compose. В последнем разделе мы задеплоим все на AWS!

3.4 AWS Elastic Container Service

Если вы дочитали до этого места, то скорее всего убедились, что Docker — довольно крутая технология. И вы не одиноки. Облачные провайдеры заметили взрывной рост популярности Докера и стали добавлять поддержку в свои сервисы. Сегодня, Докер-приложения можно деплоить на AWS, Azure,Rackspace, DigitalOcean и много других. Мы уже умеем деплоить приложение с одним контейнером на Elastic Beanstalk, а в этом разделе мы изучим AWS Elastic Container Service (или ECS).

AWS ECS — это масштабируемый и гибкий сервис по управлению контейнерами, и он поддерживает Докер. С его помощью можно управлять кластером на EC2 через простой API. В Beanstalk были нормальные настройки по умолчанию, но ECS позволяет настроить каждый аспект окружения по вашим потребностям. По этой причине ECS — не самый простой инструмент в начале пути.

Вначале нужно установить CLI. На момент написания этого пособия CLI-утилита не доступна на Windows. Инструкции по установке CLI на Mac и Linux хорошо описаны на сайте с официальной документацией. Установите утилиту, а потом проверьте ее работоспособность так:

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Теперь настройте CLI:

Команда configure с именем региона, в котором хотим разместить наш кластер, и название кластера. Нужно указать тот же регион, что использовался прри создании ключей. Если у вас не настроен AWS CLI, то следуйте руководству, которое подробно описывает все шаги.

Следующий шаг позволяет утилите создавать шаблон CloudFormation.

Единственные отличия от оригинального файла docker-compose.yml это параметры mem_limit и cpu_shares для каждого контейнера.

Красота! Давайте запустим финальную команду, которая произведет деплой на ECS!

Круто! Теперь приложение запущено. Как к нему обратиться?

Откройте http://54.86.14.14 в браузере, и увидите Food Trucks во всей своей желто-черной красе! Заодно, давайте взглянем на консоль AWS ECS.

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Докер для чайников что такое. Смотреть фото Докер для чайников что такое. Смотреть картинку Докер для чайников что такое. Картинка про Докер для чайников что такое. Фото Докер для чайников что такое

Видно, что был создан ECS-кластер ‘foodtrucks’, и в нем выполняется одна задача с двумя инстансами. Советую поковыряться в этой консоли и изучить разные ее части и опции.

Вот и все. Всего несколько команд — и приложение работает на AWS!

4.0 Заключение

Мы подошли к концу. После длинного, изматывающего, но интересного пособия вы готовы захватить мир контейнеров! Если вы следовали пособию до самого конца, то можете заслуженно гордиться собой. Вы научились устанавливать Докер, запускать свои контейнеры, запускать статические и динамические веб-сайты и, самое главное, получили опыт деплоя приложений в облако.

Надеюсь, прохождение этого руководства помогло вам стать увереннее в своих способностях управляться с серверами. Когда у вас появится новая идея для сайта или приложения, можете быть уверены, что сможете показать его людям с минимальными усилиями.

4.1 Следующие шаги

Ваше путешествие в мир контейнеров только началось. Моей целью в этом руководстве было нагулять ваш аппетит и показать мощь Докера. В мире современных технологий иногда бывает сложно разобраться самостоятельно, и руководства вроде этого призваны помогать вам. Это такое пособие, которое мне хотелось бы иметь, когда я только знакомился с Докером сам. Надеюсь, ему удалось заинтересовать вас, так что теперь вы сможете следить за прогрессом в этом области не со стороны, а с позиции знающего человека.

Ниже — список дополнительных полезных ресурсов. Советую использовать Докер в вашем следующем проекте. И не забывайте — практика приводит к совершенству.

Дополнительные ресурсы

Удачи, юный падаван!

4.2 Фидбек автору

Теперь моя очередь задавать вопросы. Вам понравилось пособие? Оно показалось вам запутанным, или вам удалось научиться чему-то?

Напишите мне (автору оригинального пособия, — прим. пер.) напрямую на prakhar@prakhar.me или просто создайте issue. Я есть в Твиттере, так что если хотите, то можете писать туда.

(Автор оригинального пособия говорит по-английски, — прим. пер.).

Буду рад услышать ваши отзывы. Не стесняйтесь предлагать улучшения или указывать на мои ошибки. Я хочу, чтобы это пособие стало одним из лучших стартовых руководств в интернете. У меня не получится это без вашей помощи.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *