Дот дисплей что это
990x.top
Простой компьютерный блог для души)
Dot Display — что это? (Xiaomi, QDLED)
Приветствую. Данная заметка расскажет об одном термине, который можно заметить просматривая характеристики телевизоров производителя Xiaomi (других тоже касается).
Dot Display — что это такое? (QDLED)
Тип дисплея QDLED, основанный на использовании полупроводниковых нанокристаллов, способный демонстрировать красный, зеленый, синий монохроматический свет. Поэтому экраны имеют большую глубину/обьем/насыщенность цвета.
Простыми словами — экраны, в описании которых видите надпись Dot Display, выдают более насыщенную, реалистичную картинку.
Например такой дисплей содержит телевизор Xiaomi Mi TV 5, имеющий диагональ экрана 55 дюймов, разрешение — 3840×2160 пикселей. Операционная система телевизора — OS Android.
На изображении разницу видно слабо, но примерно — при наличии технологии Quantum Dot Display дисплей отображает будто больше цветов:
Данная технология основана на использовании квантовых точек. Технологию содержат новейшие телевизоры Samsung (некоторые модели). Такие устройства предлагают яркую и реалистичную картинку с точной цветопередачей, высокой контрастностью, более длительным сроком службы без выгорания пикселей.
В принципе такой новый подход к созданию экранов может изменить их будущее представление. Возможно они не будут дешевыми, но зато срок службы дольше, цветов/насыщенности больше. Скорее всего просто будет новый тип экранов, предлагающий более качественное изображение, как было в свое время с матрицей IPS.
Заключение
Три технологии дисплеев, о которых нужно знать: Nano IPS, Quantum Dot и FALD
Рынок дисплеев непрерывно развивается – хотя и не всегда настолько быстро, как того хотелось бы некоторым из нас, но тем не менее текущие изменения заметить можно. В последнее время вы могли слышать о разных новых технологиях, фишках и спецификациях, названия которых вам ничего не говорят. Мы решили, что будет полезно дать серию коротких справочных статей, где разъясняется, что означают эти повсеместно употребляемые термины, и приводится ряд подробностей.
Технология Nano IPS
Технология экранных панелей IPS (In Plane Switching) используется уже много лет и является предпочтительной для профессиональных LCD-мониторов, применяемых в тех областях, где цветность имеет решающее значение. В последние годы технология IPS приобрела популярность также среди тех пользователей, которые выбирают экран по совокупности параметров. IPS-экраны отличаются стабильно высоким качеством изображения и широкими углами обзора. Улучшение времени отклика и частоты обновления сделало эту технологию реальной альтернативой более широко применяемой технологии TN Film, которая обычно использовалась в игровых дисплеях. Впервые технологию IPS применили в LG Display, но другие производители позднее разработали свои версии IPS с очень близкими характеристиками: например, AHVA от AU Optronics и PLS от Samsung являются альтернативными версиями оригинальной технологии IPS от LG Display.
Все эти годы технология IPS от поколения к поколению совершенствовалась, в том числе в таких аспектах, как яркость, время отклика, углы обзора и т.д. В 2018 г. компания LG Display, которая все-таки является одним из основных производителей IPS-панелей, представила свою новейшую версию технологии IPS под названием “Nano IPS”. Наиболее важным отличительным параметром дисплеев последнего поколения с Nano IPS является цветовой охват.
Традиционные экраны IPS обычно снабжены белой светодиодной подсветкой (W-LED), которая позволяет им воспроизводить цвета в стандартном цветовом пространстве sRGB. Это типовой стандарт, рассчитанный на большинство пользователей и на обычный контент. Но в ряде случаев люди работают с контентом, который предполагает более широкий цветовой охват; это относится к профессиональной фотографии, печати и т.д. В таких ситуациях можно использовать IPS-панель с более дорогим типом подсветки – RGB LED (или GB-r LED), который дает больший цветовой охват, соответствующий стандартному пространству Adobe RGB. Но эта система подсветки стоит дороже, является более громоздкой и потребляет больше энергии, и поэтому, как правило, используется только в профессиональных дисплеях высокого класса. Похожая картина наблюдается и с другими технологиями экранных панелей, например, VA, где ширина цветового охвата определяется типом подсветки, с учетом цены и других факторов.
Высокий динамический диапазон (HDR) – относительно новая область для рынка компьютерных мониторов, но и здесь важным аспектом является то, что такой контент требует более широкого цветового охвата по сравнению со стандартом sRGB. В настоящее время с HDR-контентом ассоциируется цветовое пространство DCI-P3, то есть для корректной цветопередачи в HDR-формате дисплей должен воспроизводить по крайней мере 90% охвата DCI-P3. Это соответствует примерно 125-135% охвата sRGB, и, в связи с повышенным интересом к HDR, производители дисплеев оказались вынужденными искать более дешевые способы расширения цветового охвата. Это привело к созданию двух альтернативных технологий, одной из которых стала Nano IPS от LG Display.
В технологии Nano IPS на обычную (W-LED) подсветку экрана наносится слой наночастиц (отсюда и название Nano IPS). Они поглощают свет с определенной длиной волны, например, ненужные оттенки желтого и оранжевого, благодаря чему улучшается точность передачи оттенков красного. Этот дополнительный слой представляет собой частицы фосфоресцирующего химического соединения калия (K), кремния (Si) и фтора (F) – K2SiF6 с примесью четырехвалентного марганца Mn4, которое дает название всей системе подсветки – KSF LED. Благодаря слою KSF экраны Nano IPS предлагают цветовой охват значительно шире обычного – до 98% DCI-P3 (135% sRGB). Это обеспечивает поддержку HDR и позволяет воспроизводить более реалистичные, яркие и насыщенные цвета.
Для справки: второй альтернативный метод, о котором вы также могли слышать и речь о котором пойдет ниже, называется “Quantum Dot” и разрабатывается, в частности, компанией Samsung. В технологии Quantum Dot слой наночастиц между подсветкой и экранной панелью наносится на специальную пленку, а не прямо на подсветку, как в Nano IPS. В результате, как утверждают в LG Display, цветовой охват относительно DCI-P3 у дисплеев с Quantum Dot получается немного меньше, чем у дисплев с Nano IPS, хотя на практике это незаметно. По крайней мере, результаты наших измерений цветового охвата компьютерных мониторов с Nano IPS и Quantum Dot до сих пор оказывались очень близкими. Кроме того, технология Quantum Dot на данный момент не может применяться в безрамочных экранах.
Технология Nano IPS, кроме увеличения цветового охвата, не несет в себе других принципиальных изменений или усовершенствований по сравнению с предыдущими поколениями IPS-экранов. Обычное для каждого нового поколения дисплеев улучшение таких показателей, как время отклика и частота обновления, не является специфической особенностью технологии Nano IPS.
Примеры дисплеев с Nano IPS – LG 34GK950F и 34GK950G.
Технология Quantum Dot
Quantum Dot – это еще одна альтернативная технология, позволяющая увеличить цветовой охват дисплея без использования дорогой подсветки RGB LED. В современных дисплеях она чаще всего реализуется в виде очень тонкой пленки или покрытия (Quantum Dot Enhancement Film, QDEF), которое располагается между экранной панелью и подсветкой и работает как светофильтр, обеспечивая на экране более реалистичные и насыщенные цвета. При этом синяя подсветка Blue LED используется чаще, чем традиционная белая подсветка W-LED.
Сами квантовые точки (Quantum Dots, QD) представляют собой частицы крайне малых размеров: от 2 до 10 нм. От размеров точек зависит, какой цвет получится на выходе. Самые крупные точки – красные, их диаметр обычно равен 7 нм (150 атомов), в то время как диаметр зеленых точек составляет около 3 нм (30 атомов). Синие точки самые маленькие – около 2 нм (15 атомов) в диаметре. Из-за своих малых размеров синие точки очень неустойчивы и использовать их сложно. По этой причине в технологиях экранных панелей чаще используют красные и зеленые квантовые точки.
Помимо расширения цветового охвата покрытие Quantum Dot также способствует достижению большего значения максимальной яркости, что актуально для дисплеев с поддержкой HDR.
Пример дисплея с Quantum Dot – модель Asus ROG Swift PG27UQ.
Технология FALD
Высокий динамический диапазон (High Dynamic Range, HDR) на рынке компьютерных мониторов в настоящее время горячо обсуждается, при этом все производители дисплеев изо всех сил всеми правдами и неправдами стараются предложить продукцию с поддержкой HDR-контента. Мы здесь не будем углубляться в стандарты и спецификации – об этом можно прочитать в подробной статье, посвященной собственно HDR.
Основной аспект HDR – достижение более высокого динамического диапазона – подразумевает увеличение контрастности, наблюдаемой на экране в любой отдельно взятый момент времени. Обычная “статическая контрастность” любого LCD-экрана определяет возможность одновременного воспроизведения на экране ярких и темных частей изображения и лимитируется конкретной технологией экранной панели. Например, панели VA на данный момент предлагают самую высокую контрастность (3000-5000:1 согласно документации) и могут воспроизводить одновременно глубокие оттенки черного и яркие оттенки белого. Панели IPS ограничиваются значениями 900-1300:1, а TN Film – 900-1000:1. Технологии HDR по сути сводятся к повышению контрастности до рабочих значений порядка десятков тысяч (например, 50000:1).
Такая контрастность достигается путем использования “локального затемнения”, когда экран разбивается на зоны, каждая из которых может подсвечиваться ярко или затемняться в зависимости от своего содержимого. Таким образом можно одновременно подсвечивать и затемнять различные участки изображения. В дисплее с HDR обязательно должен применяться какой-либо вид локального затемнения, если он действительно претендует на высокий динамический диапазон. В противном случае вы получите ограничение со стороны статической контрастности панели экрана, и даже при соответствии других характеристик, например, цветового охвата, требованиям HDR это будет «ненастоящий» HDR-дисплей. Локальное затемнение позволяет значительно увеличить контрастность и практически является основной составляющей технологии HDR.
Для LCD-дисплея эффективность метода локального затемнения напрямую зависит от количества зон подсветки. Чем больше зон, тем с большей дискретностью и эффективностью осуществляется управление подсветкой соответствующих участков изображения. С точки зрения стоимости эффективными являются решения с небольшим числом зон локального затемнения (например, 8), подсветка которых располагается по краям экрана. Такой вид локального затемнения позволяет получить некоторые из преимуществ HDR, но не обеспечивает контроль яркости изображения по всей площади экрана. Более предпочтительным решением является применение подсветки с матричным локальным затемнением (Full Array Local Dimming, FALD). В методе FALD экран разбивается на гораздо большее число зон, каждая из которых подсвечивается светодиодами, расположенными непосредственно позади нее. Такие экраны иногда называются экранами с «прямой подсветкой» – в противоположность экранам с «краевой подсветкой». К настоящему моменту выпущено или анонсировано не так много дисплеев с подсветкой FALD: например, 27-дюймовый экран с 384-зонной прямой подсветкой. Будущие 35-дюймовые ультраширокоформатные экраны будут иметь 512 зон подсветки FALD.
Dot Display на Xiaomi Redmi: что это такое?
05.02.2021 4 Просмотры
Сейчас каждый человек имеет телефон, ведь оставаться на связи постоянно крайне важно в современном мире. Кто-то покупает новые модели только тога, когда старые выходят из строя или ими становится невозможно пользоваться, а кто-то следит за новинками и покупает флагманские модели. Особенно приятно, если ваша любимая фирма сочетает в себе небольшую цену на современные устройства и новинки в последних моделях. Именно по этому многие выбирают Xiaomi и не удивительно, что производитель постоянно радует новинками, например, появился Dot Display на Xiaomi Redmi.
Dot Display является подтипом дисплея QDLED. Его основное отличие состоит в полупроводниковых нанокристаллов, которые способны издавать красный, зеленый, синий монохроматический свет. Считается, что такие дисплеи имеют большую глубину, лучший оббьем и насыщенность цвета. Сама технология QDLED была разработана еще в девяностые годы, тогда носил название дисплея, основанного на квантовых точках. Однако, разработка и применение их началось только в 2013 году.
Не секрет, что смартфоны уже давно используются не только как мобильные телефоны и средства связи, часто их применяют для работы или отдыха. Большое разнообразие аудитории, единая операционная система и мощность новых устройств сделали телефон довольно популярной игровой площадкой. Таким образом, получается, что хороший экран, с отличной передачей цвета и глубины может пригодиться многим людям.
Dot Display на Xiaomi Redmi будет полезен для отдыха, так что стоит рассмотреть данный вариант, если планируется использовать смартфон не только для рабочих разговоров и деловых переписок, но и для другого времяпрепровождения. В этом случае, яркие и глубокие цвета данного дисплея станут отличным преимуществом при выборе модели смартфона.
Dot Display на Xiaomi Redmi: что это
Смартфоны и компьютеры проделали огромный путь за несколько десятилетий. Телефоны из громоздких чудовищ, привязанных к проводам превратились в миниатюрные устройства, которые можно носить с собой везде. Да и они уже давно выполняют не только функции связи, но и камеры и переносного компьютера.
Такой легкий доступ к общению и данным сильно изменил жизнь людей. Все больше и больше действий становится привязано к телефону. И теперь это не только общение, но и учеба, работа, покупки и платежи. Да и сама аппаратная часть не стоит на месте и продолжает развиваться, радуя нас новинками с каждым годом.
Dot Display
Quantum Dot Display — это тип экрана на основе полупроводниковых нанокристаллов, который может излучать красный, зеленый и синий монохроматический свет. То есть, фактически особых отличий от обычных дисплеев нет. Производитель заявляет о большей глубине цвета и большей контрастности.
В принципе, Xiaomi это большой и известный производитель, аппаратам которого следует доверять. Соответственно, их заявления стоит проверить и сделать собственные выводы. Так, то дисплей с таким названием-это тип дисплея QDLED, основанный на использовании полупроводниковых нанокристаллов, способный демонстрировать красный, зеленый, синий монохроматический свет. Это название уже знакомо многим и по нему можно делать выводы.
Преимущества и недостатки
Большая точность в изображении, цветопередача и гамма делают изображения лучше и реалистичнее. Но в этом случае есть серьезное «но». Главный вопрос, которым стоит задаться это то, на сколько часто вам на телефоне требуется такая цветопередача. Часто ли вы смотрите там фильмы или играете в игры,на сколько большое разрешение у вашего экрана и так далее.
Просто так, без привязки к конкретным действия, цветопередача даст вам немного. Ну, будет картинка на телефоне чуть красивее, неизвестно, стоит ли за нее переплачивать или лучше взять телефон с характеристиками получше. Да, дисплей будет лучше передавать изображения, в этом можно не сомневаться. Такой экран подойдет для телевизоров и мониторов, а нужен ли он вам на телефоне, это уж стоит решить для себя.
При часто просмотре видео можно брать не задумываясь. А вот если вы смотрите его на смарте пару раз в месяц, то в этом нет особого смысла. Лучше сосредоточится на тех характеристиках, которые имеют для вас смысл в данный момент.
Учи матчасть. Ищем лучший дисплей в смартфонах
В этой серии материалов мы подробно разбираем смартфоны «по винтикам». В прошлый раз говорили о том, какую роль в современных телефонах играет процессор. Сегодня речь пойдет о другом важнейшем компоненте любого смартфона — дисплее. OLED или IPS? Full HD или 4K? 60 или 120 Гц? В конце концов, что все это вообще такое и на что ориентироваться при выборе?
Коротко, о чем пойдет речь
Тип матрицы
Абсолютное большинство современных смартфонов используют экран одного из двух типов: OLED (матрицы на органических светодиодах) или LCD (жидкокристаллические — или ЖК — панели). Так уж сложилось, что первые чаще применяются в телефонах подороже, а вторые — в более бюджетных аппаратах. Впрочем, бывают и исключения.
Если у вас есть стационарный компьютер, то вы наверняка смотрите в ЖК-экран. Если речь идет о более-менее современном дисплее, очень высока вероятность, что это IPS-матрица. Вот именно такие и встречаются во многих нынешних телефонах.
Если говорить максимально упрощенно, то работает эта технология следующим образом. Есть своеобразный «бутерброд» из слоя с множеством жидких кристаллов и слоя со светодиодной подсветкой этих самых кристаллов-пикселей. Благодаря подсветке и реакции на нее кристаллов мы и видим изображение на экране. Ключевое отличие технологии OLED в том, что там не нужен слой с подсветкой — и свет, и цвет способны выдавать сами пиксели.
Нет идеального дисплея, потому что и у IPS, и у OLED (еще можно встретить название AMOLED) есть свои достоинства и недостатки. Так, у IPS-матриц очень большой ресурс работы и имеется то, что принято называть «естественной цветопередачей». Однако они не обеспечивают отображение глубокого черного цвета (обычно вместо черного мы видим темно-серый) и отличаются довольно высоким энергопотреблением из-за наличия отдельного слоя подсветки. Это из того, что может быть заметно любому пользователю.
У OLED все отлично с выводом черного (лучше просто не может быть), а энергопотребление чуть ниже (в первую очередь за счет того, что «окрашенные» в черный цвет пиксели вообще не потребляют энергии: они просто выключены). С другой стороны, органические светодиоды со временем выгорают и теряют яркость (впрочем, для смартфонов, которые мы меняем относительно часто, это не так уж важно), а еще многие видят мерцание.
Раньше считалось, что у OLED-экранов более «ядовитые» цвета, слишком далекие от естественной цветопередачи. Но с этой «фишкой» (назвать это недугом язык не повернется, ведь многим как раз больше нравится такое перенасыщенное изображение) давно научились бороться — цветопередачу в современных смартфонах с OLED легко настроить на свой вкус.
Но есть другой момент, связанный с передачей белого цвета. Из-за особенности строения матрицы на органических светодиодах светлые тона обычно имеют зеленовато-синий оттенок. А у IPS часто можно заметить уход в теплые оттенки и преобладание желтого с легким отклонением в красный спектр.
Самое главное во всей этой истории — тот факт, что IPS-панели дешевле OLED-матриц. Поэтому в бюджетных смартфонах OLED вы не увидите, хотя в средний ценовой сегмент такие экраны уже проникли благодаря в первую очередь Samsung.
Ответить на вопрос «Какой тип матрицы лучше?» невозможно. При правильной заводской настройке визуально различимые характеристики экранов на разных матрицах очень близки. AMOLED в недорогом телефоне может оказаться куда хуже IPS в смартфоне аналогичной ценовой категории или даже дешевле. Поэтому при выборе мы бы вообще не рекомендовали ориентироваться только на тип матрицы («Ого! OLED в телефоне за 400 рублей! Беру!»). В целом современные телефонные матрицы уже избавились от некогда имевших место существенных недостатков (низкая скорость отклика, маленькие углы обзора), и даже после покупки самых недорогих телефонов вы вряд ли останетесь недовольны тем или иным дисплеем.
Разрешение
В отличие от типа матрицы, этот показатель куда критичнее для восприятия картинки. При этом и разобраться здесь куда проще. Например, вы видите, что разрешение экрана заинтересовавшего вас смартфона выглядит так: 1080×1920. Первое число указывает на количество пикселей, расположенных по горизонтали, а второе — по вертикали. Все разрешения, помимо числового формата, также обозначаются аббревиатурой. Наиболее распространенные вы наверняка видели: так, те же 1080×1920 — это Full HD, 1440×2560 — QHD (или еще 2K), а 2160×3840 — Ultra HD (или 4K) и так далее.
Чем больше пикселей на экране, тем больше информации на нем помещается и тем четче выглядит изображение. Но есть нюанс. Одно дело — разместить 1080 пикселей по горизонтали и 1920 по вертикали, например, на 27-дюймовом компьютерном мониторе, и совсем другое — на относительно маленьком 6,5-дюймовом дисплее смартфона. Разрешение одинаковое, но в первом случае получим огромные пиксели, каждый из которых вы будете видеть невооруженным глазом. Отсюда «зернистость» картинки, которая не радует глаз.
Поэтому вместо разрешения правильнее обращать внимание на такой показатель, как плотность пикселей на дюйм. Потому что он учитывает не только разрешение экрана, но и его размер. Видите значение 300 ppi? Значит, на одном дюйме помещается 300 пикселей. Другой вопрос — много этого, мало или достаточно? Вопрос в некоторой степени анатомический.
Считается, что здоровый глаз человека физически не способен разглядеть нюансы экрана с разрешающей способностью более 350 ppi. То есть что 350, что 1350 ppi — для вас оба дисплея будут в равной степени четкие, без возможности различить отдельные пиксели. Для примера: в том же экране 27-дюймового монитора с разрешением Full HD показатель ppi составит 105, а в 6,5-дюймовом дисплее — неразличимые 340.
Сегодня маркетологи стараются работать в команде с инженерами. Так в смартфонах появляются дисплеи с 500, 600 и даже 800 ppi! Все это не несет никакой пользы для человека. Более того, подобные дисплеи отличаются повышенным энергопотреблением.
Скорее всего, вы будете полностью довольны смартфоном с экраном на 350 ppi. Для чересчур впечатлительных особ, которым нужна особая «противопиксельная гарантия», можно посоветовать что-нибудь в районе 400 ppi. Все, что выше, по крайней мере не стоит рассматривать в качестве определяющего фактора при покупке: экран с 600 ppi не будет четче дисплея с 400 ppi. Именно поэтому во многих флагманских смартфонах по умолчанию установлено разрешение пониже, хотя в рекламе всенепременно делается упор на сверхвысокое разрешение. Пользователь же даже не заметит разницы.
Таким образом, применительно к дисплеям важно не столько разрешение, сколько значение ppi — количество пикселей, помещаемых на одном дюйме площади экрана. Однако и в этом случае формула «чем больше, тем лучше» работает только до определенного момента. Точнее, до 300—400 ppi. Все, что выше, — чистейшей воды маркетинг, абсолютно ненужный в быту.
Частота обновления
До недавнего времени большинство смартфонов довольствовались частотой обновления экрана на уровне 60 Гц. Здесь тоже все просто: это означает лишь то, что в течение секунды изображение на дисплее перерисовывается 60 раз. Однако вслед за настольными мониторами этот показатель начал расти и в смартфонах.
Сначала появились модели с частотой обновления экрана 90 Гц, а с недавнего времени расширяется модельный ряд с 120 Гц. Что это дает в реальности? В первую очередь — более плавную анимацию различных эффектов. Плавно скроллится текст в браузере, плавно перемещаются менюшки. В общем и целом глазам становится приятнее. Но опять же не без нюансов.
В целом высокая частота обновления экрана — это круто. Но не для всех и не так чтобы «вау!». Лучше всего здесь самому вживую посмотреть на высокогигагерцевый экран, чтобы определиться, насколько этот параметр окажется важным именно для вас.