Едкий натрий для чего
Едкий натр

каустическая сода,
едкая щелочь
— 52,2 (20 °C) г/100 мл
Гидроксид натрия лат. Natrii hydroxidum ; другие названия — каустическая сода, каустик, едкий натр, едкая щёлочь. Самая распространенная щёлочь, химическая формула NaOH. В год в мире производится и потребляется более 57 миллионов тонн едкой щёлочи. Гидроксид натрия также используется для мойки пресс-форм автопокрышек, называется Mold Cleaner фирмы «NALCO». Интересна история тривиальных названий как гидроксида натрия, так и других щелочей, название «едкая щёлочь» обусловлено свойством разьедать кожу, бумагу, стекло и вызывать сильные ожоги. До XVII века, щёлочью (фр. alkali) называли также карбонаты натрия и калия. В 1736 французский учёный А. Л. Дюамель дю Монсо впервые различил эти вещества: гидроксид натрия стали называть каустической содой, карбонат натрия — кальцинированной содой (по растению Salsola Soda, из золы которого её добывали), а карбонат калия — поташем. В настоящее время содой принято называть натриевые соли угольной кислоты. В английском и французском языках слово sodium означает натрий, potassium — калий.
Содержание
Физические свойства
ΔH 0 растворения для бесконечно разбавленного водного раствора —44,45 кДж/моль.
Из водных растворов при 12,3 — 61,8 °C кристаллизуется моногидрат (сингония ромбическая), температура плавления 65,1 °C; плотность 1,829 г/см³; ΔH 0 обр −734,96 кДж/моль), в интервале от —28 до —24°С — гептагидрат, от —24 до —17,7°С — пентагидрат, от —17,7 до —5,4°С —тетрагидрат (α-модификация), от —5,4 до 12,3 °C. Растворимость в метаноле 23,6 г/л (t=28 °C), в этаноле 14,7 г/л (t=28 °C). NaOH·3,5Н2О (температура плавления 15,5 °C);
Химические свойства
Гидроксид натрия (едкая щёлочь)— сильное химическое основание (к сильным основаниям относят гидроксиды, молекулы которых полностью диссоциируют в воде), к ним относят гидроксиды щелочных и щёлочно-земельных металлов подгрупп Iа и IIа периодической системы Д. И. Менделеева, KOH (едкий калий), Ba(OH)2 (едкий барит), LiOH, RbOH, CsOH. Щёлочность (основность) определяется валентностью металла, радиусом внешней электронной оболочки и электрохимической активностью: чем больше радиус электронной оболочки (увеличивается с порядковым номером), тем легче металл отдает электроны, и тем выше его электрохимическая активность и тем левее располагается элемент в ряду электрохимической активности металлов, в котором за ноль принята активность водорода.
Гидроксид натрия вступает в реакции:
1.Нейтрализации с различными веществами в любых агрегатных состояниях, от растворов и газов до твердых веществ:
так и с растворами:
(Образующийся анион называется тетрагидроксоцинкат-ионом, а соль, которую можно выделить из раствора — тетрагидроксоцинкатом натрия. В аналогичные реакции гидроксид натрия вступает и c другими амфотерными оксидами.)
(2) H2S + NaOH = NaHS + H2O (кислая соль, при отношении 1:1)
2. Обмена с солями в растворе:
Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия, действуя гидроксидом натрия на сульфат алюминия в водном растворе. Его и используют, в частности, для очистки воды от мелких взвесей.
например, с фосфором — с образованием гипофосфита натрия:
4. С металлами: Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал). Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксиалюмината натрия и водорода:
В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла, в зависимости от состава жира.
6. С многоатомными спиртами — с образованием алкоголятов:
7. Со стеклом: в результате длительного воздействия горячей гидроокиси натрия поверхность стекла становится матовой (выщелачивание силикатов):
Качественное определение ионов натрия возможно несколькими способами
1. По цвету пламени горелки — ионы натрия придают пламени жёлтую окраску:
2. С использованием специфических реакций на ионы натрия:
| Реагент | Фторид аммония | Нитрит цезия-калия-висмута | Ацетат магния | Ацетат цинка | Пикро- | ||
|---|---|---|---|---|---|---|---|
| Цвет осадка | белый | бледно-жёлтый | жёлто-зеленый | желто-зеленый | белый | белый | бледно-жёлтый |
Способы получения
Промышленные способы получения
В промышленном масштабе гидроксид натрия получают электролизом растворов галита (каменная соль NaCl) с одновременным получением водорода и хлора:
Едкие щёлочи, полученные при электролизе с жидким ртутным катодом, значительно чище полученных диафрагменным способом. Для некоторых производств это важно. Так, в производстве искусственных волокон можно применять только каустик, полученный при электролизе с жидким ртутным катодом. В мировой практике используются все три метода получения хлора и каустика, при явной тенденции в сторону увеличения доли мембранного электролиза. В России приблизительно 35 % от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65 % — электролизом с твёрдым катодом (диафрагменный и мембранный методы).
Эффективность процесса производства рассчитывается не только по выходу едкого натра, но и по выходу хлора и водорода, получаемых при электролизе, соотношение хлора и гидроксида натрия на выходе 100/110, реакция протекает в следующих соотношениях:
1,8 NaCl + 0, 5 H2O + 2,8 МДж = 1,00 Cl2 + 1,10 NaOH + 0,03 H2,
Основные показатели различных методов производства даны в таблице:
Технологическая схема электролиза с твёрдым катодом
Диафрагменный метод — Полость электролизёра с твёрдым катодом разделена пористой перегородкой — диафрагмой — на катодное и анодное пространство, где соответственно размещены катод и анод электролизёра. Поэтому такой электролизёр часто называют диафрагменным, а метод получения — диафрагменным электролизом [1]. В анодное пространство диафрагменного электролизёра непрерывно поступает поток насыщенного анолита. В результате электрохимического процесса на аноде за счет разложения галита выделяется хлор, а на катоде за счет разложения воды — водород. Хлор и водород выводятся из электролизёра раздельно, не смешиваясь:
При этом прикатодная зона обогащается гидроксидом натрия. Раствор из прикатодной зоны, называемый электролитическим щёлоком, содержащий неразложившийся анолит и гидроксид натрия, непрерывно выводится из электролизёра. На следующей стадии электролитический щёлок упаривают и доводят содержание в нём NaOH до 42—50 % в соответствии со стандартом. Галит и сульфат натрия при повышении концентрации гидроксида натрия выпадают в осадок. Раствор едкой щёлочи декантируют от осадка и передают в качестве готового продукта на склад или на стадию упаривания для получения твёрдого продукта, с последующим плавлением, чешуированием или грануляцией. Кристаллический галит (обратную соль) возвращают на электролиз, приготавливая из неё так называемый обратный рассол. Из него во избежание накапливания сульфата в растворах перед приготовлением обратного рассола извлекают сульфат. Убыль анолита возмещают добавкой свежего рассола, получаемого подземным выщелачиванием соляных пластов или растворением твёрдого галита. Свежий рассол перед смешиванием его с обратным рассолом очищают от механических взвесей и значительной части ионов кальция и магния. Полученный хлор отделяется от паров воды, компримируется и подаётся либо на производство хлорсодержащих продуктов, либо на сжижение.
Мембранный метод — аналогичен диафрагменному, но анодное и катодное пространства разделены катионообменной мембраной. Мембранный электролиз обеспечивает получение наиболее чистого каустика.
который отводится из электролизёра, а на ртутном катоде образуется слабый раствор натрия в ртути, так называемая амальгама:
Амальгама непрерывно перетекает из электролизёра в разлагатель. В разлагатель также непрерывно подаётся хорошо очищенная от примесей вода. В нем амальгама натрия в результате самопроизвольного электрохимического процесса почти полностью разлагается водой с образованием ртути, раствора каустика и водорода:
Полученный таким образом раствор каустика, являющийся товарным продуктом, не содержит примеси галита, вредной в производстве вискозы. Ртуть почти полностью освобождается от амальгамы натрия и возвращается в электролизер. Водород отводится на очистку. Анолит, выходящий из электролизера, донасыщают свежим галитом, извлекают из него примеси, внесенные с ним, а также вымываемые из анодов и конструкционных материалов, и возвращают на электролиз. Перед донасыщением из анолита извлекают двух- или трёхступенчатым процессом растворённый в нём хлор.
Лабораторные способы получения
В лаборатории гидроксид натрия получают химическими способами, которые имеют больше историческое, чем практическое значение.
В результате реакции образуется раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора, который упаривается до получения расплавленного продукта, содержащего около 92 % NaOH. Расплавленный NaOH разливают в железные барабаны, где он застывает.
Ферритный способ описывается двумя реакциями:
(1) — процесс спекания кальцинированной соды с окисью железа при температуре 1100—1200°С. При этом образуется спек-феррит натрия и выделяется двуокись углерода. Далее спек обрабатывают (выщелачивают) водой по реакции (2); получается раствор гидроксида натрия и осадок Fe2O3, который после отделения его от раствора возвращается в процесс. Раствор содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % NaOH.
Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется большое количество топлива, получаемый едкий натр загрязнен примесями, обслуживание аппаратов трудоемко. В настоящее время эти методы почти полностью вытеснены электрохимическим способом производства.
Формула едкого натра, химические свойства и область применения
Эксперт по вопросам дачи
Гидроксид натрия имеет большое значение для промышленности, этим и обусловлено его широкое распространение. Каустик, или едкий натр, применяется практически во всех областях жизни человека — от химического производства до пищевой отрасли. Несмотря на свои разъедающие свойства, эта щелочь зарегистрирована как пищевая добавка Е524. Это не означает, что она вообще не несет вред для здоровья, хотя в минимальных дозах каустическая сода неопасна.

История открытия и происхождения вещества
В древности это вещество добывали из природных озер, об этом даже имеются упоминания в Библии. Конечно, тогда еще была неизвестна его формула, а также все свойства, но по описанию похоже, что это был именно каустик.
В древнеримских и древнегреческих письменных источниках известных ученых и философов того времени содержатся сведения о веществе nitrum. Оно имело вид больших твердых кусков белого либо черного цвета и их промежуточных оттенков. Дело в том, что в природных условиях каустическая сода чаще всего загрязнена углем, а в то время еще не было придумано методик очистки. Но даже такую форму активно применяли для очищения домашней утвари, посуды и других предметов быта.
В IV веке до нашей эры начали производить мыло, используя при этом натриевую щелочь. Спектр добычи этого вещества несколько расширился, и теперь едкий натр выделяли из пепла растения Salsola Soda. Мыло использовалось преимущественно для стирки белья, а позже, когда в арабских странах в него додумались добавлять ароматические масла, его начали применять в косметологии.
С этого момента мыловарение стало активно развиваться, а его технологии — совершенствоваться. Но всегда и везде каустик являлся неотъемлемым ингредиентом любого хорошего мыла.
Только в XVII веке ученый Дюамель дю Монсо отграничил натриевую щелочь от других химических соединений, с которыми ранее ее объединяли — двууглекислый натрий, гидроксид калия, а также карбонаты натрия и калия. Он разделил их по свойствам и дал им названия, которыми химики пользуются и по сей день.
Химические и физические свойства
Формула каустической соды — NaOH.

Едкий натр имеет вид кристаллического порошка белого цвета. Кристаллы твердые, не крошатся, легко растворимы в воде. Имеют сильную щелочную реакцию — pH13. Для сравнения, уровень кислотно-щелочного баланса пищевой соды — 8. Как видно из формулы, едкий натрий состоит из молекул водорода, кислорода и натрия, которые полностью диссоциируют в воде, благодаря чему он относится к сильным химическим основаниям.
Читайтепо теме:
Серная мазь: инструкция по применению, цена и отзывы
Гет Тотал – современное средство для эффективной борьбы с насекомыми
Избавляемся от тараканов и клопов с Ксулат Микро
Ксулат С25 – мощное современное средство от тараканов и клопов
Физические характеристики натриевой щелочи следующие:
В 100 мл возможно полностью растворить 108,7 г вещества. Процесс идет с выделением большого количества тепловой энергии, что делает его взрывоопасным.
Кристаллы гидроксида натрия очень гигроскопичны, способны мгновенно поглощать воду в газообразном состоянии из окружающего воздуха, при этом даже видно, как они «расплываются». Формула водного раствора едкого натра — NaOH·3,5Н2О.
Растворенная щелочь имеет определенную мылкость, если растереть ее пальцами. Это ощущение обусловливается активным омылением кожного жира под ее воздействием. Подобными свойствами обладают также гидроксиды калия, барита, лития, рубидия, цезия и таллия. По этой причине раньше многие из них относились к одному веществу.
Каустик взаимодействует с кислотами и их оксидами, солями и гидроксидами, а также с галогенами, серой и фосфором. С металлами проявляет коррозийно-активные свойства, что позволяет хорошо очищать их поверхность от окислов.
В этом видео рассказано про гидроксид натрия:
Каустик относится ко второму классу опасности, это говорит о том, что он высокоопасен и требует специальных мер предосторожности при перевозке и применении.
Получение различными способами
В лабораторных и промышленных целях каустик получают по-разному, однако есть наиболее популярные методы, которые просты в использовании и позволяют получить качественный продукт.
Диафрагменный метод
Считается наиболее простым с точки зрения организации и используемых материалов для конструкции электролизера. Согласно этому способу соляной раствор подается к аноду через катодную сетку асбестовой диафрагмой. Водород при этом выводится при помощи специальной трубки, не проникая через сетку из-за противотока, благодаря которому получение щелочи отделено от хлора. Выделение кислорода вредит процессу и может привести к разрушению анода.

Полученный в результате реакции раствор щелочи выпаривают, избавляют от примесей, выпадающих в осадок, и доводят до кристаллизации. Хлор, выделенный во время реакции, сжижается либо используется в производстве хлорсодержащих продуктов. Диафрагменный метод ценится за простоту и незатратность, поэтому до сих пор широко применяется для получения каустика.
Мембранное производство
Этот метод считается самым эффективным, но его довольно сложно организовать. Процессы сходны с диафрагменным методом, однако вместо проницаемой диафрагмы анод отделен от катода плотной мембраной, через которую не могут проходить анионы, в то время как катионы свободно просачиваются. В таком случае производство получается более чистым, с минимальным количеством побочных продуктов и примесей. Еще одной особенностью является наличие двух потов, а не одного, как в диафрагменном синтезе.

Солевой раствор точно так же проникает к аноду, а к катоду подается деионизированная вода. В результате из катодного пространства вытекает щелочь и водород почти без примесей, а кроме того, практически не требующие выпаривания, так как находятся в приемлемой концентрации.
Мембранные системы довольно сложны и требуют тщательнейшей предварительной очистки подающихся растворов из-за уязвимости катионообменных мембран к примесям и дороговизны материала, из которого они изготовлены. К тому же необходимо устанавливать системы управления и контроля за процессом, что само по себе сложно и затратно.

Использование жидкого ртутного катода
Электролиз с использованием ртути позволяет получить гораздо более чистый продукт, чем при диафрагменном методе. Кроме того, если сравнивать с мембранным способом получения каустика, то ртутный намного проще.
Установка состоит из следующих компонентов:
Катодом является непрерывный ртутный поток, подаваемый насосом, аноды чаще всего делают из графита или угля. Параллельно со ртутным потоком через электролизер проходит раствор поваренной соли.

почти не используется для производства щелочи
На аноде идет процесс оксигенации ионов хлора из солевого раствора выделением хлора. Хлор с отработанным анолитом выводится, хлор извлекают, а анолит донасыщают и освобождают от примесей, после чего снова подают в электролизер.
На катоде образуется слабый раствор натрия в ртути — амальгама натрия. Далее амальгама поступает в разлагатель вместе с высоко очищенной водой. Там амальгама натрия практически полностью разлагается водой в результате самопроизвольно протекающего химического процесса. В итоге образуется каустический раствор, водород и ртуть.
В результате ртутного метода раствор натра почти не содержит примесей и считается высококачественным. Очищенная от натрия ртуть направляется обратно на электролиз, водород подлежит очистке.
Однако ввиду высокой стоимости ртути и неэкологичности метода использование ртутного катода постепенно вытесняется другими способами получения натриевой щелочи, в частности, мембранным способом.
Применение натриевой щелочи
Ежегодно в мире синтезируется более 58 миллионов тонн едкого натра, что обусловлено широким спектром отраслей, в которых он используется.
Таким образом, неудивительно, что синтез этого вещества во всем мире так популярен, ведь каустик востребован практически во всех отраслях промышленности.
Опасность и меры предосторожности
При попадании на кожу, слизистые оболочки и внутрь человеческого тела каустическая сода способна вызвать тяжелые химические ожоги, которые могут нанести непоправимый вред организму — некротические поражения тканей, потеря участков кожного покрова, атрофию зрительного нерва, некоторых функций вплоть до летального исхода в зависимости от степени поражения и своевременности оказания квалифицированной медицинской помощи. Ожоги щелочью даже опаснее кислотных воздействий — разъедание трудно остановить, а еще сложнее избавиться от последствий и вернуть все в норму.

Если раствор едкой соды попал на кожу или слизистые оболочки, требуется срочно промыть пораженный участок слабым раствором уксуса, а после — чистой проточной водой.
Кроме повреждения тканей тела, едкий натр растворяет все органические вещества. При выбросе его в окружающую среду без предварительной нейтрализации может надолго загрязнить почву и выжечь на ней все живое, в том числе растения на поверхности и живые организмы в толще грунта. То же касается и попадания в природные водоемы, где его раствор хоть и слабеет, но все же вызывает гибель рыбы и всей водной экосистемы в окрестностях выброса.
В промышленных масштабах каустик нейтрализуют кислотой. Химическая реакция, возникающая при соединении этих веществ, способствует образованию соли и воды: NaOH + HCl = NaCl + H2O.
Так же поступают и с другими опасными гидроксидами, например, едким калием (H2SO4 + KOH = H2O + KSO4).
Во время любого взаимодействия обязательно нужно учитывать свойства едкого натра и использовать средства для защиты:
Кроме того, необходимо учитывать, что гидроксид натрия, находящийся в воздухе, не должен превышать концентрацию в 0,5 мг/м³.
Таким образом, едкий каустик является не только очень ценным для промышленности, но и крайне опасным веществом. Поэтому любое использование его в производстве или дома должно предусматривать обязательную защиту организма от его вредного воздействия. Кроме того, очень важно правильно дозировать этот гидроксид во избежание ожогов и отравления.






