За счет чего поддерживается длительность существования каждой экосистемы
Устойчивость и саморегуляция экосистемы
Устойчивость и саморегуляция экосистемы
Любой биогеоценоз представляет собой чрезвычайно сложную динамическую систему, состоящую из многих сотен и даже тысяч видов живых организмов, объединенных трофическими, топическими и другими связями. Так, по данным российского ученого В. В. Мазинга (1976), только в состав двух популяций березы (повислой и пушистой) входит 91 вид паразитических и 35 видов микоризообразующих грибов, 46 видов эпифитных лишайников, 7 видов эпифитных печеночников и 16 видов эпифитных лиственных мхов, 8 видов клещей, 574 вида насекомых, 8 видов птиц, 9 видов млекопитающих — всего 795 видов, не считая бактерий, простейших, водорослей, актиномицетов. Такие сложные природные экосистемы имеют собственные законы сложения, функционирования и развития. Длительность существования каждой экосистемы поддерживается прежде всего за счет общего круговорота веществ, осуществляемого продуцентами, консументами и редуцентами, и постоянного притока солнечной энергии. Именно эти два глобальных явления обеспечивают ей высокую способность противостоять воздействию постоянно меняющихся условий внешней среды.
Устойчивость экосистемы обеспечивается также биологическим разнообразием и сложностью трофических связей организмов, входящих в ее состав.
В богатых видами экосистемах у консументов есть возможность избирать разные виды пищевых объектов и в первую очередь — наиболее массовые. Если потребляемый пищевой объект становится редким, то консумент переключается на питание другим видом, а первый, освобожденный от пресса выедания, постепенно будет восстанавливать свою численность. Благодаря такому переключению поддерживается динамическое равновесие между пищевыми ресурсами и их потребителями и обеспечивается возможность их длительного сосуществования.
Таким образом, процесс саморегуляции экосистемы проявляется в том, что все разнообразие ее населения существует совместно, не уничтожая полностью друг друга, а лишь ограничивая численность особей каждого вида определенного уровня. Например, в лесу листьями древесных растений питаются несколько сотен видов насекомых, но в оптимальных условиях каждый вид представлен незначительным количеством особей, поэтому их общая деятельность не наносит существенного вреда лесным деревьям. Однако насекомые отличаются большой плодовитостью, и если бы отсутствовали ограничивающие факторы (неблагоприятные погодные условия, уничтожение хищными и паразитическими насекомыми, птицами, болезнетворными микроорганизмами и т. п.), то численность любого вида насекомых возросла бы очень быстро и привела бы к разрушению экосистемы. Следовательно, взаимоотношения типа хищник—жертва, паразит—хозяин взаимно сглаживают всплеск численности и стабилизируют экосистему.
Важным фактором стабилизации экосистемы является генетическое разнообразие особей популяций. Изменение условий внешней среды может вызвать гибель большинства особей популяции, адаптированных к прежним условиям существования. Поэтому чем более генетически разнородной является та или иная популяция экосистемы, тем больший шанс у нее иметь организмы с аллелями, ответственными за появление признаков и свойств, позволяющих выжить и размножаться в новых условиях и восстановить прежнюю численность популяции. Время, необходимое для восстановления популяции, будет зависеть от скорости размножения особей, так как изменение признаков происходит только путем отбора в каждом поколении.
Стабильность экосистемы зависит также от степени колебаний условий внешней среды. В тропиках и субтропиках стабильны и оптимальны для многих видов температурные условия, влажность, освещенность. Поэтому тропические экосистемы с высоким биологическим разнообразием входящих в них организмов отличаются высокой устойчивостью. И, напротив, тундровые экосистемы менее устойчивы. Им свойственны резкие колебания численности популяций разных видов.
Способность экосистемы к саморегуляции и поддержанию динамического равновесия называется гомеостазам. Гомеостаз экосистемы выражается в способности сохранять постоянство видового состава и численности особей, поддерживать относительную стабильность и целостность генетической структуры в меняющихся условиях внешней среды. Нарушение природных цепей питания под воздействием антропогенного фактора, непродуманное вмешательство человека в экосистемы могут привести к неконтролируемому росту или снижению численности особей определенных популяций и к нарушению природных экосистем.
От чего зависит продолжительность существования экосистем?
Важным фактором стабилизации экосистемы является генетическое разнообразие особей популяций. Изменение условий внешней среды может вызвать гибель большинства особей популяции, адаптированных к прежним условиям существования. Поэтому чем более генетически разнородной является та или иная популяция экосистемы, тем больший шанс у нее иметь организмы с аллелями, ответственными за появление признаков и свойств, позволяющих выжить и размножаться в новых условиях и восстановить прежнюю численность популяции. Время, необходимое для восстановления популяции, будет зависеть от скорости размножения особей, так как изменение признаков происходит только путем отбора в каждом поколении.
Стабильность экосистемы зависит также от степени колебаний условий внешней среды. В тропиках и субтропиках стабильны и оптимальны для многих видов температурные условия, влажность, освещенность. Поэтому тропические экосистемы с высоким биологическим разнообразием входящих в них организмов отличаются высокой устойчивостью. И, напротив, тундровые экосистемы менее устойчивы. Им свойственны резкие колебания численности популяций разных видов.
Способность экосистемы к саморегуляции и поддержанию динамического равновесия называется гомеостазам. Гомеостаз экосистемы выражается в способности сохранять постоянство видового состава и численности особей, поддерживать относительную стабильность и целостность генетической структуры в меняющихся условиях внешней среды. Нарушение природных цепей питания под воздействием антропогенного фактора, непродуманное вмешательство человека в экосистемы могут привести к неконтролируемому росту или снижению численности особей определенных популяций и к нарушению природных экосистем.
За счет чего поддерживается длительность существования каждой экосистемы
ЛЕКЦИЯ 3. ЭКОСИСТЕМНОЕ РАЗНООБРАЗИЕ.
Сохранение insitu означает сохранение экосистем и естественных мест обитания, а также поддержание и восстановление жизнеспособных популяций видов в их естественной среде, а применительно к одомашненным или культивируемым видам — в той среде, в которой они приобрели свои отличительные признаки.
Как правило, подразумевается сохранение компонентов биологического разнообразия на особо охраняемых природных территориях (ООПТ): заповедниках, заказниках, национальных парках, памятниках природы и т.п. Особо обращается внимание на сохранение местообитаний видов и структуры взаимосвязей.
Биологические системы разных иерархических уровней характеризуются различной структурой, законами развития и функционирования. Поэтому на разных иерархических уровнях необходимо определить: принципы, то есть частные методологические подходы, основанные на исходных научных положениях об объектах биоразнообразия; основные задачи по сохранению объектов; и способы их сохранения.
Исходное научное положение : совокупность функционально взаимосвязанных организмов (биоценоз) и абиотических компонентов среды, в которой они существуют (биотоп, экотоп ), а также поддержание и восстановление жизнеспособных популяций видов в их естественной среде, составляют единую систему (экосистему).
— Сохранение и восстановление природных экосистем, поддержание их средообразующих функций.
— Поддержание естественных процессов развития природных экосистем.
— Сохранение и восстановление экологически сбалансированных природно-культурных комплексов.
— Сохранение и восстановление абиотической среды (абиотических компонентов экосистем).
Полноценное и долговременное сохранение видов и сообществ организмов возможно только в составе природных экосистем, при сохранении типичной для них абиотической среды. Качество абиотических компонентов среды (воды, воздуха, грунта) рассматривается сегодня как важнейший показатель здоровья среды.
Нормальное существование и развитие экосистем предполагает закономерную смену сукцессионных стадий. При разработке стратегии управления биоразнообразием на экосистемном уровне необходимо учитывать их динамический характер. Сохранение экосистем может быть обеспечено только при сохранении разнообразия сообществ, представляющих разные стадии сукцессии, и всего формирующего их видового разнообразия.
Контроль и регулирование использования территорий и акваторий в пределах экологической емкости экосистем. На этом уровне внимание должно уделяться прежде всего сохранению и восстановлению абиотической среды.
Создание особо охраняемых природных территорий с разным режимом охраны. Режим охраны особо охраняемых природных территорий может предусматривать специальные меры по сохранению среды, например, запрет тех или иных типов физического или химического воздействия, охрана уникальных абиотических компонентов среды (водопады, ключи, скалы и др.).
Сохранение и восстановление биотопов как условие сохранения и восстановления биоценозов и экосистем (очистка от загрязнений, рекультивация, мелиорация и др.).
Реконструкция (реставрация) природных экосистем необходима, когда природная экосистема, включая биотоп, разрушена. В качестве необходимого этапа этот метод включает реставрацию биотопа.
Наибольшей устойчивостью и лучшими средообразующими качествами характеризуются искусственные экосистемы, структура которых аналогична структуре природных экосистем. Необходимо уделять особое внимание развитию экологической инженерии как основы конструирования экосистем.
Разнообразие экосистем касается различных сред обитания, биотических сообществ и экологических процессов в биосфере, а также огромного разнообразия сред обитания и процессов в рамках экосистемы.
Количественные показатели биоразнообразия в экосистемах сильно варьируют в зависимости от влияния различных факторов. Следует обратить внимание на то, что в биоценоз входят не только виды, постоянно обитающие в экосистеме, но и виды, проводящие в ней только часть своего жизненного цикла (например, личинки комаров, стрекоз).
Видовой состав и в целом разнообразие биоценоза может быть описано только в определенный момент времени, так как видовое богатство изменяется в результате процессов иммиграции и элиминации видов, непрерывно происходящих в биоценозе.
Временной фактор в той или иной мере учитывается в службах мониторинга окружающей среды. Так, в частности, программы гидробиологического мониторинга в России требуют обязательного проведения анализа в разные сезоны года и оценки состояния водных объектов на основе данных, полученных в весенний, летний и осенний периоды.
В каждый момент времени биоценоз имеет определенное видовое богатство.
Чем разнообразнее условия окружающей среды в данном регионе, чем больше времени в распоряжении организмов для эволюционных преобразований, тем разнообразнее здесь их видовой состав. Рельеф и геологическое строение могут создать разнообразие условий в пределах областей с однородным климатом.
В холмистой местности ее наклон и экспонированность определяют температуру и содержание влаги в почве. На крутых склонах почва хорошо дренируется, что нередко приводит к недостатку влаги для растений, хотя в близлежащих низинных местах почва насыщена влагой. В аридных областях, в поймах и по руслам рек часто можно видеть хорошо развитые лесные сообщества, резко контрастирующие с окружающей пустынной растительностью. На теплых и сухих склонах холма, обращенных на юг, растут иные древесные породы, нежели на холодных и влажных северных. Холмистый рельеф часто ассоциируется с красотой ландшафта, а это означает, что здесь соседствуют богатые и разнообразные сообщества. Живописный пейзаж всегда вызывает восхищение. В этом одна из причин того, почему горы или берега излюбленных водоемов служат местом массового паломничества любителей природы.
Всякий ландшафт на земном шаре претерпевает изменения под действием климатических условий. Огромно влияние на них растительного мира. Ландшафты во всем их разнообразии формировались на протяжении многих тысячелетий и в результате деятельности человека. Они непрерывно изменяются благодаря постоянным поискам эффективных форм землепользования и добычи полезных ископаемых. Человек строит города и прокладывает дороги. Таким образом, ландшафты состоят из ряда природных и культурных элементов. Они воплощают в себе коллективную память природы и тех, кто ее населяет, образуя сложный элемент окружающей среды.
Устойчивость экосистемы обеспечивается также биологическим разнообразием и сложностью трофических связей организмов, входящих в ее состав.
Они формируют 2 блока:
1) Автотрофный (продуценты)
2) Гетеротрофный ( консументы и редуценты )
Продуценты – автотрофные организмы, способные производить органические вещества из неорганических, используя фотосинтез или хемосинтез (растения и автотрофные бактерии).
Устойчивость природных систем к воздействию-способность природных систем сохранять свою структуру и функциональные свойства при антропогенном воздействии.
Установлено три принципа устойчивого развития экосистем:
· 1. В естественных экосистемах использование ресурсов и избавление от отходов осуществляется в рамках круговорота всех элементов (в городах этот процесс нарушается, когда чуждые природе вещества накапливаются на свалках и разрывают круговорот веществ).
· 2. Экосистемы существуют за счет не загрязняющей среду солнечной энергии, количество которой постоянно и избыточно (в городах в основном используется дополнительная энергия, получаемая за счет сжигания ископаемых углеводородов).
· 3. На конце длинных пищевых цепей не может быть большой биомассы (отсюда вытекает предел численности жителей в экосистеме, нарушенный в городах, где происходит неконтролируемый рост населения).
Известный эколог Коммонер свел главные принципы и закономерности существования экосистем к четырем «экологическим императивам», которые в строгом смысле не являются законами, но понятно и образно описывают экологическую среду:
«Все надо куда-то девать». Естественные экосистемы обладают способностью обеззараживать без нарушения экологического равновесия определенное количество вредных веществ; высокой способностью к самоочистке обладают водные экосистемы. Полностью безотходные технологии невозможны. В связи с этим необходимы надежные методы захоронения вредных веществ. Отходы одного производства могут быть включены в технологические процессы других производств.
«Все связано со всем». Экосистема находится в состоянии экологического равновесия. Его можно нарушить уничтожением какого-либо вида или, наоборот, вселением нового. Осушение болот вызывает обмеление рек. Выпас в горных лесах овец, коз разрушает почву, уменьшает впитывание дождевых и снеговых вод, приводит к высыханию родников.
«За все надо платить». В настоящее время необходимо нести расходы на содержание служб, контролирующих рациональное использование природных ресурсов, на восстановление природных экосистем, нарушенных неправильным использованием.
«Природа знает лучше». Нужно изымать (вырубка лесов, охота и рыбный промысел и др.) из экосистемы столько биологических ресурсов, сколько она сама может восстановить за счет собственного гомеостаза.
Конечно, не следует думать, что природу вообще трогать нельзя. Человеку для того и дан разум, чтобы тщательно взвешивать последствия своих действий исходя из законов экологии, и стремиться не только к тому, чтобы компенсировать недостатки, а чтобы свести к минимуму ущерб. Совсем без ущерба для природы человек обойтись не может.
ВОПРОСЫ ДЛЯ КОНТРОЛЯ ЗНАНИЙ
1. Охарактеризуйте экосистемный уровень сохранения биоразнообразия.
2. Назовите способы сохранения биоразнообразия на данном уровне.
3. Перечислите основные задачи сохранения биоразнообразия.
4. Какова роль биологического разнообразия в устойчивости экосистем?
5. Какие факторы, определяющие устойчивость и развитие экосистем вы знаете?
УСТОЙЧИВОСТЬ ЭКОЛОГИЧЕСКИХ СИСТЕМ
Глава 1. Устойчивость экосистем.. 4
1.1 Виды устойчивости экосистем.. 4
1.2 Роль биологического разнообразия в устойчивости экосистем.. 5
1.3 Сукцессия, основные этапы и принципы.. 7
1.4 Устойчивость лесных экосистем в урбанизированных районах. 9
1.5 Устойчивость экосистем в России. 12
Глава 2. Методики определения устойчивости экосистем.. 15
2.1 Методы использования данных по скорости освобождения химических элементов из подстилки для диагностики устойчивости экосистем.. 15
2.2 Диагностика устойчивости экосистем по интенсивности процессов трансформации органического вещества 22
2.3 Методика расчета экологической устойчивости региональной территории. 27
Глава 3. Пример расчета экологической устойчивости региональной территории. 32
Список литературы.. 34
В наше время решение такой проблемы как устойчивости экосистем требует соотнесения характеристик стабильной жизнедеятельности экосистем с величиной оказываемого на них антропогенного воздействия (или же негативного природного). Не касаясь бесчисленного множества аспектов проблематики, стоит обратить внимание на такое свойство экосистем, как регенерация, то есть способность к восстановлению деформированных структур и функций. Это свойство находит выражение в процессах самоорганизации (самокоординации, саморегуляции, самовосстановления, самоочищения), которые следует рассматривать как важнейшие составляющее экологического потенциала.
Свойство регенерации может быть реализовано в полной мере только в экосистемах, имеющих определенные структуры и особенности вещественно-энергетических взаимосвязей с внешней средой. Природная эволюция для этого выстроила всю иерархию биосферы: от автотрофного мира фотосинтеза (продуцентов) до гетеротрофов различных уровней, питающихся произведённой органикой, разлагающих ее и снова возвращающих вещества на нижние ярусы продуцентов для возобновления жизненного цикла.
Это сложнейшая целостно взаимосвязанная структура каналов распределения биогенной энергии, потоков информации, ее координирующих и регулирующих течение процессов может быть нарушена при эксплуатации экосистем, выходящей за пределы их несущей емкости, в пределах которой экосистемы сохраняют жизнеспособность, продуктивность и свойства самовосстановления.
Глава 1. Устойчивость экосистем
1.1 Виды устойчивости экосистем
Системы с высокой резидентной устойчивостью способны воспринимать значительные воздействия, не изменяя существенно своей структуры, то есть практически не выходя за пределы равновесного состояния. Поэтому понятие упругой устойчивости для них не определено (если система не выходила за пределы равновесия, то как можно говорить о возвращении в равновесное состояние после снятия возмущения). Если внешнее воздействие превышает определенные критические значения, то такая система обычно разрушается. В технике подобное качество называется жесткостью. Предельные значения внешних воздействий, которые система способна выдержать без разрушения соответствуют запасу жесткости. Когда говорят о высокой резидентной устойчивости, то имеется в виду именно высокий запас жесткости данной системы. Это несколько отличается от понятия высокой стабильности, так как здесь в первую очередь внимание обращается на неизменность структуры. Тундра, например, обладает высокой стабильностью, но она очень ранима, у нее малый запас жесткости, то есть малая резидентная устойчивость. Экосистему тундры очень легко разрушить. Достаточно проехать вездеходу. Колеи, которые он оставляют за собой, сохраняются десятилетиями. Такие экосистемы по аналогии с техникой можно назвать хрупкими.
Системы с малой резидентной устойчивостью для нормального существования должны обладать высокой упругой устойчивостью. Они более чувствительны к внешним возмущениям, под действием которых они как бы «прогибаются», частично деформируя свою структуру, но после снятия или ослабления внешних воздействий быстро возвращаются в исходное равновесное состояние. При превышении пороговых воздействий такая система теряет устойчивость, то есть все дальше удаляется от состояния равновесия. Диапазон воздействий, которые может выдержать система без разрушения, в технике соответствует запасу упругости. Таким образом, степень упругой устойчивости можно оценить как упругостью, определяющей степень сопротивления внешнему воздействию и скорость возврата в исходное состояние после снятия воздействия, так и запасом упругости. В отличие от упругих систем, пластичные системы после снятия внешнего воздействия не возвращаются в исходное состояние, а приходят к какому-то другому равновесному состоянию. Так согласно точке зрения оппонентов теории моноклимакса, для экосистем характерно не одно, а несколько состояний равновесия (климакса). Таким образом, для пластичных экосистем характерна малая упругая и малая резидентная устойчивость.
Похоже на то, что резидентная и упругая устойчивости взаимоисключают друг друга, точнее, экосистеме трудно развивать оба вида устойчивости. Например, одни леса состоят из деревьев с толстой корой, обладающих повышенной резидентной устойчивостью к пожарам. Но если такой лес все-таки сгорит, то его восстановление, как правило, крайне проблематично. Напротив, многие леса очень часто горят (низкая резидентная устойчивость), но быстро восстанавливаются (высокая упругая устойчивость). Ориентация экосистем на один из видов устойчивости определяется, как правило, изменчивостью среды: при стабильных условиях экосистемы склонны к более высокой резидентной устойчивости, при изменчивых условиях предпочтение отдается упругой устойчивости.
1.2 Роль биологического разнообразия в устойчивости экосистем
Устойчивость экосистемы обеспечивается также биологическим разнообразием и сложностью трофических связей организмов, входящих в ее состав.
Важным фактором устойчивости экосистемы является генетическое разнообразие особей популяций. Изменение условий внешней среды может вызвать гибель большинства особей популяции, адаптированных к прежним условиям существования. Поэтому, чем более генетически разнородной является та или иная популяция экосистемы, тем больший шанс у нее иметь организмы с аллелями, ответственными за появление признаков и свойств, позволяющих выжить и размножаться в новых условиях и восстановить прежнюю численность популяции. Время, необходимое для восстановления популяции, будет зависеть от скорости размножения особей, так как изменение признаков происходит только путем отбора в каждом поколении.
1.3 Сукцессия, основные этапы и принципы
Экосистему можно вывести из состояния равновесия многими способами. Обычно это бывает пожар, наводнение или засуха. После такого нарушения равновесия новая экосистема сама себя восстанавливает, и этот процесс носит регулярный характер и повторяется в самых разных ситуациях. На месте нарушения определенные виды и вся экосистема развиваются таким образом, что порядок появления этих видов одинаков для схожих нарушений и схожих ареалах. В этой последовательной смене одних видов другими и заключается суть экологической сукцессии.
Изучая сукцессию в экосистемах, экологи выделили три механизма ее действия:
Эмпирический закон сукцессионного замедления является следствием правила Г. Одума и Р. Пинкертона, или правила максимума энергии поддержания зрелой системы: сукцессия развивается в направлении сдвига потока энергии в сторону увеличения ее количества, направленного на поддержание системы. В свою очередь это правило базируется на правиле максимума энергии максимума энергии в биологических системах, сформулированном А. Лоткой. Ещё одним из принципов экосистемы является такой принцип как «нулевой максимум», или минимизация прироста в зрелой экосистеме: экосистема в сукцессионном развитии стремится к образованию наибольшей биомассы при наименьшей биологической продуктивности. Немаловажным постулатом является принцип «сукцессионного очищения», или стабилизации и минимизации видового состава климакса: разнообразие стремится к пику на ранних или средних фазах сукцессии, а затем снижается в климаксе.[2]
1.4 Устойчивость лесных экосистем в урбанизированных районах
Городские экосистемы отличаются от всех видов внегородских (даже от т.н. «устойчивого хуторского ландшафта») не только предельной нарушенностью почвы и растительности, сильной обеднённостью фауны; в конце концов, даже климаксный бореальный или широколиственный лес есть мозаика пятен, представляющих собой нарушения на разных стадиях зарастания. Главное отличие в том, что в городе наблюдаются такие системные диспропорции, которые никогда не фиксируются в однотипных природных сообществах (с аналогичными почвенными условиями и растительностью).
Так, в исследованиях Э.Г. Коломыца выявлена общая тенденция урботехногенной аридизации лесных экосистем (исследовали экосистемы двух полигонов в низменном Заречном районе Нижнего Новгорода: 1) лесопарковый массив «Стригинской Бор» с достаточно высокой рекреационной нагрузкой и слабым загрязнением природных сред; 2) Сормовский городской парк культуры и отдыха, испытывающий сильное геохимическое воздействие от окружающих его промышленных предприятий и автотранспортных магистралей и также подверженный рекреации. Эталоном для сравнения послужил сосново-лесной участок заповедника «Керженский», находящийся в 50 км к северо-востоку от Нижнего Новгорода (Низменное Заволжье) в аналогичных геолого-геоморфологических и биоклиматических условиях.). [4]
На примере почв Автозаводского городского парка удалось проследить не только тенденцию, но и скорость геохимических изменений лесных почв за 50-летний период (1939-1989 гг.). В конце 30-х годов, когда работа предприятий ГАЗ только начиналась, в парке не было нейтральных и слабощелочных почв. Спустя 50 лет они составляли уже более 10% от общего количества обработанных нами образцов. Сдвиг рН составил в среднем 2% в год.
Урботехногенная аридизация лесных экосистем отчетливо проявляется также в автотрофном биогенезе. Общая первичная продуктивность (Р) сосняков Керженского заповедника составляет 5,5-12,5 т/га в год, что лежит в диапазоне первичной продуктивности от средней тайги до луговых степей. В пределах города экстремальные значения Р падают в 4-5 раз, причем в отрицательных формах рельефа гораздо сильнее, чем в положительных. Поэтому разница в значениях продуктивности между типами МП существенно сглаживается. Происходит своего рода локальное выравнивание величин продукции лесных фитоценозов на фоне общего снижения интенсивности продукционного процесса.[4]
Далее, лесные сообщества вне мегаполиса (уже сильно изменённые рекреацией и другими формами воздействия) организованы так, что характер растительности целиком определяется существующими формами рельефа (градиентами от водоразделов к пойме ручьёв и пр.), определяющими различия гидрологического режима и других условий среды вдоль соответствующих градиентов.
В городе эта зависимость растительности от форм рельефа и структуры ландшафта через гидрологию полностью разрушается, заменяясь зависимостью от антропогенных нарушений и антропогенного же «удобрения» территорий органикой, нитратами, фосфором, эти два фактора формируют градиенты, заменяющие ландшафтные.
Температура почвы утрачивает свои свойства индикатора состояния лесной экосистемы. Она больше не зависит от литогенных условий и влажности почв. Режимы влажности и температуры почвенных горизонтов все больше зависят от структурных характеристик лесопаркового фитоценозов подверженных прямому антропогенному воздействию. Происходит определенное выравнивание контрастов гидротермического режима почв между различными элементами микрорельефа, а в Сормовском парке температуры почвы вообще не зависят от типа местоположения.[4]
Одновременно в первый эшелон ландшафтных связей выходят ценотические группы лесных экосистем, которые наравне с факторами литогенной основы определяют всю систему межкомпонентных связей. Это вызвано глубокой антропогенной трансформацией напочвенного покрова в городских лесопарковых экосистемах: первоначальным олуговением травостоя и последующей заменой лесных и луговых видов сорной и рудеральной растительностью, которая оказывается почти не связанной с увлажнением почв. То есть буферные свойства почвы в городах дополняются и компенсируются буферными свойствами увеличивающейся биомассы рудеральной растительности, тем более что при умеренном нарушении природных сообществ запасы фитомассы резко возрастают.[1,3]
1.5 Устойчивость экосистем в России
Уровень потенциальной устойчивости коренных экосистем России, то есть уровень устойчивости экосистем до их трансформации человеком, показан на следующей карте.
Максимум устойчивости приходится на лесостепь Европейской России, Предуралье и среднюю тайгу Сибири, к северу и к югу устойчивость систем снижается. Минимум в России наблюдается в арктических пустынях. Так, как в Россию заходит лишь самый край туранских пустынь, уровень их устойчивости еще достаточно высок.[9]
На приведенной карте видно, что потенциальная устойчивость экосистем России практически всюду в той или иной степени снижена за счет замены коренных типов экосистем, менее устойчивыми антропогенными производными (агроценозами или вторичными лесами) или полным уничтожением при застройке и урбанизации. При этом максимальные по площади воздействия характерны именно для районов с самыми устойчивыми природными комплексами. В России говорят: «Кто везет, на того и валят». Устойчивые экосистемы южной тайги и лесостепи России сохраняли возможность достаточно автономного, без подпитки со стороны, развития индустриальной цивилизации последних полутора веков, несмотря на максимальную утрату природных комплексов. [9]
Глава 2. Методики определения устойчивости экосистем
2.1 Методы использования данных по скорости освобождения химических элементов из подстилки для диагностики устойчивости экосистем
Предложена методика оценки устойчивости ареалов по качественным и количественным показателям малого биологического круговорота, в том числе интенсивности высвобождения химических элементов из подстилки. Именно эта величина отражает скорость закрепления химических веществ в подстилке и возможность перемещения химических веществ по почвенному профилю. Показано, что запасы подстилки и скорость высвобождения химических элементов из мертвых растительных остатков коррелируют с данными по соотношению гуминовых и фульвокислот в почвах, т.к. являются результатом высвобождения химических элементов из органического вещества подстилки.
Представление о том, что повышение устойчивости экосистем путем стабилизации биогеохимических круговоротов является основным эволюционным преобразованием, приобрело в последнее время достаточно широкое распространение, однако балансы этих круговоротов учитываются совершенно недостаточно.
Для понимания причин устойчивости современных экосистем и пределов допустимых антропогенных воздействий в них важно исследование процесса формирования в ходе эволюции устойчивых круговоротов вещества и энергии в экосистемах, поддержание в них балансных отношений, раскрытие схем, поддерживающих устойчивость. Во всех этих проблемах весьма существенным может быть вклад исследователей, располагающих огромным количеством фактов, которые описывают функции отдельных элементов экосистем, определяющих устойчивость. Основным из подобных элементов является мертвое органическое вещество подстилки.
Для подстилки как системы характерны целостность, структурная организация, функционирование и история. Подстилка как подсистема почвенной системы находится в тесной связи с другими подсистемами почвы и выполняет определенную функцию системы. С точки зрения системной организации подстилка представляет собой горизонтный структурный уровень.
В геохимическом отношении подстилка рассматривается как поверхностный радиальный почвенно-геохимический (сорбционный, седиментационный, механический) микробарьер, в пределах которого резко уменьшается интенсивность миграции химических элементов и как следствие происходит их концентрация. В органогенных горизонтах происходит биогенная накопительная концентрация углерода, азота, зольных элементов, а также минеральных частиц, привнесенных ветром, водой и в результате роющей деятельности почвенных животных.
Величина потока зольных элементов и азота из подстилок характеризует интенсивность круговорота в различных экосистемах.
Скорость высвобождения химических элементов позволяет считать химический состав подстилки и интенсивность высвобождения химических элементов факторами, позволяющими определить устойчивость экосистем.
Однако имеющиеся сведения о влиянии этих показателей на устойчивость зональных плакорных и интразональных типов растительности являются недостаточными, т.к.:
— отсутствует анализ данных по содержанию химических элементов в подстилке и влиянию интенсивности освобождения химических элементов на устойчивость экосистем;
— не существует методики оценки качественных и количественных показателей малого биологического круговорота для диагностики устойчивости экосистем;
— отсутствует методика, позволяющая использовать данные по количеству химических элементов, соотношению C/N, отношению углерода гуминовых кислот к углероду фульвокислот для оценки устойчивости биогеоценозов для дальнейшего решения вопросов рационального природопользования.
Разработанная методика оценки устойчивости ареалов по качественным и количественным показателям малого биологического круговорота предусматривает следующие обязательные операции.
1. Анализ экспертных данных, позволяющих выделить количественные и качественные показатели малого биологического круговорота, которые влияют на устойчивость ареалов. Использовались экспертные данные ведущих ученых географов, экологов, почвоведов. Выделены следующие показатели: химический состав подстилки и опада, интенсивность высвобождения химических элементов, соотношение гуминовых и фульвокислот (Сгк/Сфк), период биологической активности (ПБА, дни); интенсивность и характер биологического круговорота.
2. Характеристика морфофизиологических особенностей малого биологического круговорота в ареалах с известными запасами подстилки по следующим параметрам:
— характеристика запасов подстилки и наземного опада в ареале и преобладающие виды растительности;
— динамика органического вещества в ареалах;
— накопление органических остатков в подстилке и их химизм;
— общие черты почвенно-биологических процессов;
— оценка характера и скорости малого биологического круговорота, а также интенсивности высвобождения химических элементов из подстилки и устойчивости ареала.
3. Создание шкалы числовых показателей, содержащих химические элементы в подстилке и почвенных профилях для диагностики устойчивости ареала:
— унификация количественных и качественных показателей биологического круговорота для определения устойчивости ареала и составление шкалы числовых показателей;
— классификации типов устойчивости;
— описание количественных и качественных показателей, характеризующих каждый балл устойчивости;
— создание наглядных диагностических графических схем, показывающих особенности каждого ареала.
Исходя из сведений, приведенных в различных экспертных источниках, данные по биологическому круговороту могут использоваться для диагностики устойчивости экосистем. Такими данными являются количественные показатели, характеризующие интенсивность освобождения химических элементов из мертвых органических остатков, т.е. отношение количества химических элементов в подстилке и зеленой части опада.
Химические элементы, содержащиеся в опаде, могут (в соответствии с различной интенсивностью процессов разложения органических остатков) задерживаться в подстилке или степном войлоке на более или менее продолжительное время.
Вопросы малого биологического круговорота, интенсивности высвобождения химических элементов из мертвых растительных остатков и формирования почвенного профиля рассматривались по различным методикам. Однако эти данные не являются достаточно полными и вполне сравнимыми, т.к. объектами исследований оказывались растительные сообщества и экосистемы различных стран. Таким образом, следует считать, что оперируется в значительной мере выборочными данными, которые позволят оценить роль химического состава подстилок в поддержании устойчивости биогеоценозов. «Экологические системы и приборы №4 2007г»
В ареале широколиственных лесов умеренного пояса с запасами подстилки 151 ц/га и зоны черноземных степей с запасами подстилки 121 ц/га сумма химических элементов отличается незначительно (в пределах 800. 1 500 кг/га). Это объясняется тем, что хотя в лиственных лесах подстилки накапливается меньше, но ее зольность выше.
В табл. 1 приведены данные по количеству химических элементов в подстилке и опаде, а также расчетная величина интенсивности высвобождения химических элементов.
Данные табл. 1 наглядно показывают, что с увеличением органического вещества опада особенно быстро нарастает количество химических элементов в ареале пустынь и сухих степей, постепенно снижаясь в ареалах саванн и влажных тропических лесов, тогда как в кустарничковых тундрах и сфагновых болотах соответствует 50. 100 кг/га. Таким образом, количество химических элементов, поступающих с ежегодным опадом, обратно пропорционально массе опада. [6]
Таблица 1. Количество химических элементов в подстилке и опаде и расчетная величина интенсивности высвобождения химических элементов по экспертным данным
Ареал, запасы подстилки, ц/га
Количество химических элементов в подстилке, кг/га (по экспертным данным)
Количество химических элементов в опаде, кг/га (по экспертным данным)
Интенсивность высвобождения химических элементов