Диагонали взаимно перпендикулярны что это значит

Диагонали взаимно перпендикулярны что это значит

Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.

$$ 4.<2>^<○>$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).

Диагонали взаимно перпендикулярны что это значит. Смотреть фото Диагонали взаимно перпендикулярны что это значит. Смотреть картинку Диагонали взаимно перпендикулярны что это значит. Картинка про Диагонали взаимно перпендикулярны что это значит. Фото Диагонали взаимно перпендикулярны что это значит

$$ 4.<3>^<○>$$. В равнобокой трапеции углы при основании равны (рис. 22).

$$ 4.<4>^<○>$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).

$$ 4.<5>^<○>$$. В равнобокой трапеции диагонали равны (рис. 24).

$$ 4.<6>^<○>$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме

(рис. 25, основания равны `a` и `b`, `a>b`).

Диагонали взаимно перпендикулярны что это значит. Смотреть фото Диагонали взаимно перпендикулярны что это значит. Смотреть картинку Диагонали взаимно перпендикулярны что это значит. Картинка про Диагонали взаимно перпендикулярны что это значит. Фото Диагонали взаимно перпендикулярны что это значит

$$ 4.<7>^<○>$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).

$$ 4.<8>^<○>$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).

Диагонали взаимно перпендикулярны что это значит. Смотреть фото Диагонали взаимно перпендикулярны что это значит. Смотреть картинку Диагонали взаимно перпендикулярны что это значит. Картинка про Диагонали взаимно перпендикулярны что это значит. Фото Диагонали взаимно перпендикулярны что это значит

Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.<10>^<○>$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).

$$ 4.<11>^<○>$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.

Применяем теорему косинусов (см. рис. 29а и б):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).

Проводим `CK«|\|«BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем

Диагонали взаимно перпендикулярны что это значит. Смотреть фото Диагонали взаимно перпендикулярны что это значит. Смотреть картинку Диагонали взаимно перпендикулярны что это значит. Картинка про Диагонали взаимно перпендикулярны что это значит. Фото Диагонали взаимно перпендикулярны что это значит

Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.

Диагонали взаимно перпендикулярны что это значит. Смотреть фото Диагонали взаимно перпендикулярны что это значит. Смотреть картинку Диагонали взаимно перпендикулярны что это значит. Картинка про Диагонали взаимно перпендикулярны что это значит. Фото Диагонали взаимно перпендикулярны что это значит

Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то

Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.

Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна

Диагонали взаимно перпендикулярны что это значит. Смотреть фото Диагонали взаимно перпендикулярны что это значит. Смотреть картинку Диагонали взаимно перпендикулярны что это значит. Картинка про Диагонали взаимно перпендикулярны что это значит. Фото Диагонали взаимно перпендикулярны что это значит

Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).

Диагонали взаимно перпендикулярны что это значит. Смотреть фото Диагонали взаимно перпендикулярны что это значит. Смотреть картинку Диагонали взаимно перпендикулярны что это значит. Картинка про Диагонали взаимно перпендикулярны что это значит. Фото Диагонали взаимно перпендикулярны что это значит

Найти радиус окружности, описанной около этой трапеции.

Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда

$$ 4.<12>^<○>$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.

Источник

Диагонали перпендикулярны

Одним из признаков ромба является то, что его диагонали взаимно перпендикулярны. В виде теоремы данный признак формулируется так:

Если диагонали параллелограмма перпендикулярны друг другу, то такой параллелограмм является ромбом.

Доказательство этой теоремы сводится к тому, чтобы доказать, что у такого параллелограмма стороны равны. Именно равенство сторон параллелограмма позволяет заключить, что это ромб.

Таким образом, нам дан параллелограмм, у которого диагонали взаимно перпендикулярны. Требуется доказать, что у такого параллелограмма все стороны равны.

Пусть дан параллелограмм ABCD, его диагонали AC и BD пересекаются в точке E и перпендикулярны друг другу.

Одним из признаков параллелограмма является то, что его диагонали точкой пересечения делятся пополам. Поскольку нам дан параллелограмм, то AE = EC и BE = ED.

Рассмотрим треугольники AEB, BEC, CED, DEA. Все они прямоугольные, так как все углы при вершине E прямые, что дано по условию (диагонали перпендикулярны друг другу). У всех этих треугольников катеты также равны, так как являются половинками диагоналей. Таким образом, данные треугольники равны друг другу по двум сторонам и углу между ними или по двум катетам.

Из равенства треугольников следует равенство их соответствующих сторон и углов. Стороне AB треугольника ABE соответствуют стороны BC, CD, DA остальных треугольников. Значит, AB = BC = CD = DA.

Таким образом было доказано, что если в параллелограмме диагонали взаимно перпендикулярны, то его стороны равны, а значит, он является ромбом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *