Для чего нужен дроссель в пневмосистеме
Пневмодроссель как разновидность регулирующей пневмоаппаратуры
Назначением регулирующей пневмоаппаратуры является изменение давления и расхода сжатого воздуха с помощью регулировки величины открытия проходного сечения.
Сюда относятся пневматические дроссели, клапаны предохранительные и редукционные.
Дроссели изменяют расход сжатого воздуха путем формирования локального гидросопротивления его потоку.
Постоянные пневмодроссели (нерегулируемые)
Их сопротивление не меняется во время работы.
Пневмодроссели переменные (регулируемые)
Их сопротивление меняется настройкой.
Пневмодросселем в большинстве случаев регулируется скорость пневматических двигателей и скорость наполнения/опустошения резервуаров для создания временных задержек.
Регулируемые модели выпускают на ручном или механическом управлении.
При ручном варианте расход воздуха задается при пуско-наладке и он постоянен.
При механическом варианте (тормозной пневмодроссель) расход определяет величина перемещения управляющего элемента, задаваемого профилем копира/кулачка.
Подбором профиля копира можно менять сопротивление дросселя на всей длине перемещения выходного звена двигателя, т. е. желаемую зависимость между скоростью и перемещением выходного звена.
Нерегулируемые пневматические дроссели
Используются для обеспечения настроенного параметра сопротивления и выполняются в виде калиброванных отверстий во втулке/шайбе.
Регулирование скорости работы пневмоцилиндров
1. Конструкция пневмоцилиндра
В условиях современного производства часто возникают задачи, требующие перемещения и фиксации объектов. Например, на линиях упаковки пищевых продуктов (сыр, творог) и розлива напитков (молоко, соки, газированные напитки), на термопластавтоматах, при производстве резинотехнических изделий и т. д. Одним из наиболее простых и экономически выгодных устройств для линейного перемещения объектов является пневмоцилиндр.
На рисунке 1 несколько упрощённо показана конструкция пневмоцилиндра. Если порт P2 подключить к линии сжатого воздуха, а из порта P1 сбросить воздух в атмосферу, поршень цилиндра начнёт двигаться влево, приводя к выдвижению штока (прямой ход штока). Подача давления в порт P1 и сброс воздуха из порта P2 приводят к движению в противоположном направлении (обратный ход штока).
Рисунок 1 – Конструкция пневмоцилиндра
2. Фитинги с регулировкой расхода воздуха
Очевидно, что установка таких фитингов на обоих портах пневмоцилиндра (P1 и P2) не позволит независимо управлять скоростью прямого и обратного хода штока цилиндра, поскольку дросселирование потока воздуха при прохождении через фитинг происходит в обоих направлениях. В итоге скорость движения штока будет ограничена наименьшим расходом воздуха.
Для независимого управления скоростью прямого и обратного хода штока пневмоцилиндров применяют фитинги-регуляторы расхода с обратным клапаном. Их обозначение на пневмосхемах приведено на рисунке 3а. При направлении движения воздуха слева направо обратный клапан закрыт, и воздух через него не проходит (красная стрелка на рисунке 3б). Воздух проходит через дросселирующее устройство, с помощью которого осуществляется регулировка расхода (синяя стрелка на рисунке 3б). При направлении движения воздуха справа налево обратный клапан открывается, и основная часть потока воздуха проходит через него (красная стрелка на рисунке 3в). Некоторая часть воздуха продолжает проходить через дросселирующее устройство (синяя стрелка), однако, это практически не влияет на расход воздуха в целом.
Рисунок 3 – Принцип работы дросселя с обратным клапаном
Таким образом, использование дросселей с обратным клапаном обеспечивает регулирование расхода при движении воздуха в одном направлении и максимальный расход при движении воздуха в противоположном направлении. Поэтому при монтаже фитингов-регуляторов расхода с обратным клапаном следует соблюдать направление включения, указанное на пневмосхеме. Как правило, на самом фитинге нанесено его условное графическое обозначение, по которому становится понятно, в каком направлении осуществляется регулирование расхода воздуха, а в каком — обеспечивается полный расход. Например, на рисунке 4 показано расположение такого обозначения для фитингов с регулировкой расхода MV 21 и MV 34.
Рисунок 4 – Фитинги-регуляторы расхода с обратным клапаном
3. Регулирование скорости работы пневмоцилиндров
Регуляторы расхода (дроссели) с обратным клапаном позволяют осуществлять изменение расхода воздуха при его движении в одном направлении и не ограничивают расход в противоположном направлении. Эту особенность можно использовать для задания разной скорости движения поршня пневмоцилиндра в прямом и обратном направлении.
Возможны две разные схемы расположения дросселей с обратным клапаном при регулировании скорости хода штока пневмоцилиндра:
Рассмотрим эти варианты последовательно.
Регулирование расхода при подаче воздуха в цилиндр
При использовании данного способа регулирования сбрасываемый воздух будет выходить из пневмоцилиндра быстрее подаваемого, поскольку использование дросселей позволяет только уменьшить расход воздуха, но не увеличить его. Это приводит к тому, что в одной из камер цилиндра давление оказывается близким к атмосферному. Данная ситуация показана на рисунке 5: порт P1 соединён с атмосферой, в порт P2 осуществляется подача сжатого воздуха, шток цилиндра движется влево.
Рисунок 5 – Регулирование расхода при подаче воздуха в цилиндр
Такое распределение давлений внутри цилиндра имеет следующие последствия:
1. Ухудшается восприятие цилиндром нагрузки в направлении движения штока. Это происходит потому, что давление в камере цилиндра, в сторону которой осуществляется движение, близко к атмосферному, и оно не оказывает сопротивления движению в данном направлении.
2. При небольших скоростях шток начинает двигаться рывками. Дело в том, что расход поступающего в цилиндр воздуха ограничен, а объём камеры увеличивается по мере движения штока. Совместно с различными значениями силы трения покоя и силы трения скольжения это приводит к колебаниям давления внутри цилиндра и неравномерному движению штока.
3. Становится невозможной остановка штока цилиндра в промежуточных положениях с помощью клапанов 5/3 центр закрыт. Как видно на рисунке 5, одна из камер цилиндра находится под давлением, а вторая — нет. Поэтому при переводе распределительного клапана 5/3 центр закрыт в среднее положение неизбежно продолжение движения цилиндра до тех пор, пока давление в обеих камерах не уравновесится.
Регулирование расхода при сбросе воздуха из цилиндра
При использовании данного способа регулирования подача воздуха в цилиндр осуществляется с максимальным расходом, а расход воздуха при сбросе в атмосферу ограничен, т. е. воздух может поступать в цилиндр быстрее, чем выходить из него. При данной схеме регулирования давление в сбросной камере пневмоцилиндра сохраняется во время движения штока (рисунок 6, камера порта P1).
Рисунок 6 – Регулирование расхода при сбросе воздуха из цилиндра
Такой способ регулирования имеет следующие особенности:
1. Пневмоцилиндр хорошо воспринимает нагрузку как сонаправленную с движением штока, так и имеющую противоположное направление, поскольку обе камеры цилиндра находятся под давлением.
2. По сравнению с предыдущей схемой регулирования становится возможным достижение более медленных скоростей движения при сохранении плавности хода штока.
3. Упрощается остановка штока в заданном положении. Так как обе камеры цилиндра находятся под давлением, при их перекрытии цилиндр быстро достигает равновесного состояния. Это существенно уменьшает расстояние, пройденное штоком от момента перекрытия портов цилиндра до полной остановки штока.
Из этого следует, что регулирование расхода при сбросе воздуха из цилиндра является предпочтительным по сравнению с регулированием расхода при подаче воздуха в цилиндр.
4. Фитинги с регулировкой расхода для разных способов монтажа
При рассмотрении конструкции и принципа работы фитингов с регулировкой расхода были упомянуты две модели таких фитингов: MV 21 и MV 34 (см. рисунок 4). Конструкция фитингов-регуляторов позволяет легко смонтировать их на панели. Поэтому данные модели удобно использовать в случаях, требующих оперативной подстройки скорости работы пневмоцилиндров.
Однако, в некоторых случаях, регулирование оператором скорости работы пневмоцилиндров не только не требуется, но и может иметь негативные последствия. Например, неправильная настройка взаимодействующих между собой механизмов может привести к некорректной работе всей установки. Для ограничения доступа оперативного персонала к устройствам регулирования скорости пневмоцилиндров существуют модификации фитингов с регулировкой расхода, монтируемые непосредственно на пневмоцилиндры или на распределительные клапаны. На рисунке 7 приведён внешний вид и пневмосхемы таких фитингов.
Рисунок 7 – Фитинги с регулировкой расхода с обратным клапаном
На рисунке 8 приведены пневмосхемы для подстройки скорости прямого и обратного хода штока пневмоцилиндра Vesta NWT 050.0100, управляемого клапаном VALMA PIV-S-A-14.
5. Выводы
Инженер ООО «КИП-Сервис»
Быков А.Ю.
Пневматическое и гидравлическое оборудование. Приводные системы.
Продукция
Подготовка сжатого воздуха
Пневмораспределители
Клапаны/ Фильтры
Пневмодроссели
Пневматические цилиндры/приводы
Резьбовые соединения / трубки
Контрольно-измерительная аппаратура
Вакуумное оборудование
Оборудование для смазки и обдува
Гидравлическое оборудование
Запорная арматура / шаровые краны
Электромеханический привод
Обратные клапаны
Управляющие и регулирующие устройства
К запорным элементам в пневмоавтоматике относятся устройства, обеспечивающие полное перекрытие потока сжатого воздуха, — обратные клапаны, пневмозамки, вентили.
Рис. 1. Обратный клапан
Герметичное закрытие клапана при движении потока в обратном направлении обеспечивается не только встроенной пружиной, но и воздействием давления сжатого воздуха на его запорно-регулирующий элемент.
Символ пружины включают в условное графическое обозначение обратных клапанов в том случае, когда необходимо подчеркнуть следующее: клапан открывается при условии, что давление на входе превышает давление на выходе и давление пружины.
Рис. 2. Пневмозамок и примеры его применения
Во фрагменте схемы с 5/2-пнемораспределителем, показанном на рис. 2, в, пневмозамки открываются при подаче внешнего управляющего сигнала.
Рис. 3. Шаровые краны:
а) с ручным управление; б) с пневматическим управлением
Запорная арматура с пневматическим управлением широко применяется в автоматизированных производствах, содержащих разветвленную сеть трубопроводов, например в пищевой, химической и других отраслях промышленности.
2. Устройства регулирования расхода
Расход сжатого воздуха в пневмоприводах регулируют с целью управления скоростями движения выходных звеньев исполнительных механизмов.
Простейшим пневматическим элементом, позволяющим регулировать расход воздуха, является дроссель. Дроссель — это устройство, обеспечивающее существенное уменьшение площади проходного сечения канала, по которому движется сжатый воздух. Установка дросселя в пневмолинии приводит к возникновению дополнительного местного сопротивления движению потока воздуха, что и обусловливает снижение расхода.
Рис. 4. Пневмодроссели:
а — постоянный; б — регулируемый
Если длина щели превышает ее диаметр, дроссель принято называть ламинарным, в противном случае — турбулентным.
Рис. 5. Пневмодроссель с обратным клапаном
В нормальном состоянии тарельчатый обратный клапан 5, в центральной части которого выполнено дросселирующее отверстие 3, прижат к седлу 4 пружиной 2. В случае, когда сжатый воздух поступает из канала А в канал В, он протекает только через это отверстие, проходное сечение которого (а следовательно, и расход) можно изменять посредством регулировочного винта 1. Движение воздуха в обратном направлении сопровождается подъемом обратного клапана с седла, что позволяет потоку беспрепятственно протекать из канала В в канал А.
Таким образом, поток воздуха дросселируется при движении через дроссель с обратным клапаном в одном направлении и свободно протекает через обратный клапан при движении в противоположном направлении.
Обычно на корпусах пневматических дросселей с обратным клапаном присутствует условное графическое обозначение, на котором расположение обратного клапана относительно присоединительных отверстий строго соответствует его позиции в реальной конструкции. Иногда обозначение заменяют стрелкой, указывающей направление дросселирования потока.
Рис. 6. Регулирование скорости движения штока пневмоцилиндра одностороннего действия
Управлять скоростью выходного звена пневмоцилиндров двустороннего действия можно дросселированием воздуха в линии нагнетания (регулирование на входе) или выхлопа (регулирование на выходе). Для примера рассмотрим регулирование скорости прямого хода.
При дросселировании натекающего воздуха (регулирование на входе — рис. 7, а) рабочая полость заполняется медленно, столь же медленно возрастает и давление в ней. В связи с этим давление в рабочей полости сильно зависит от колебаний значений нагружающего усилия, а восприятие цилиндром попутной нагрузки (направление действия которой совпадает с направлением движения штока) становится практически невозможным.
Рис. 7. Регулирование скорости движения штока пневмоцилиндра двустороннего действия
По этой причине скорость движения штока пневмоцилиндра двустороннего действия регулируется преимущественно дросселированием воздуха, вытекающего из исполнительного механизма (регулирование на выходе — рис. 7, б). Сжатый воздух при такой схеме включения дросселя с обратным клапаном свободно поступает в поршневую полость цилиндра, тогда как в штоковой создается «подпор », тормозящий поршень. При этом в обеих рабочих полостях поддерживается высокий уровень давления, что обеспечивает плавный ход поршня, практически не зависящий от колебаний значения нагружающего усилия.
На представленной схеме оба дросселя с обратным клапаном регулируют скорость прямого хода цилиндра, в то время как скорость обратного хода регулированию не поддается.
Рис. 8. Вворачиваемые дроссели:
а — дроссель с обратным клапаном;
б — выхлопной дроссель
Применение выхлопных дросселей становится неэффективным, если линия подвода воздуха от пневмо-распределителя к исполнительному механизму имеет значительную длину. Этот факт объясняется тем, что объем, в котором сжимается воздух (выхлопная полость цилиндра и трубопровод), оказывается настолько большим, что перемещение поршня уже не вызывает в нем повышения давления в той мере, в какой это требуется для обеспечения эффективного регулирования скорости движения выходного звена.
Рис. 9. Регулирование скорости движения штока пневмоцилиндров
Рис. 10. К лапан быстрого выхлопа
Рис. 11 Принципиальная пневматическая схема с клапанами быстрого выхлопа
Регулирование скорости движения исполнительных механизмов не ограничивается только использованием дросселей и клапанов быстрого выхлопа. Существует множество схемных решений с применением клапанов давления, дополнительных емкостей, внешних тормозных устройств и др.
Устройства регулирования давления
Поддержание заданного давления в рабочих полостях исполнительных механизмов обеспечивает постоянство развиваемого ими усилия либо скорости движения выходного звена, что является обязательным требованием при создании многих технологических установок.
Задачи регулирования давления в пневматических системах решаются посредством клапанов давления: предохранительных и редукционных
Рис. 12. Пневмоклапаны давления:
б) редукционный двухлинейный;
в) редукционный трехлинейный.
При выборе клапанов давления следует принимать во внимание следующие технические характеристики: диапазон рабочих давлений; диапазон температур; номинальный расход;
размеры присоединительных отверстий.
Традиционные варианты использования клапанов давления в пневматических системах представлены на рис. 13
Рис. 13. Пример использования пневмоклапанов давления
Предохранительный клапан 0.4 ограничивает уровень давления в ресивере 0.1, а клапаны 2.01 и 2.02 создают «подпор » в рабочих полостях пневмоцилиндра 2.0. Посредством этих клапанов фактически регулируется скорость движения штока цилиндра 2.0. Подобная схема регулирования обеспечивает стабильность скоростных характеристик при изменении величины нагрузки.
Редукционный клапан 1.02 поддерживает на постоянном уровне усилие, развиваемое пневмоцилиндром 1.0 при прямом ходе. Чтобы обеспечить свободный возврат пневмоцилиндра 1.0 в исходную позицию, параллельно редукционному клапану 1.02 устанавливают обратный клапан 1,01.
Рис. 14 Предохранительный пневмоклапан
Рис. 15. Пневмоклапаны давления с внешним управлением
Клапаны с пропорциональным управлением являются наиболее универсальными с точки зрения возможностей автоматизации управления сложными технологическими объектами, поскольку в соответствующий аналоговый электрический сигнал можно преобразовать и перемещение, и давление (а также другие физические величины). Кроме того, применение клапанов давления с пропорциональным управлением позволяет осуществлять программное управление уровнем давления в пневматической системе с помощью промышленных логических контроллеров.
Рис.16 Усилитель давления
Усилитель давления фактически представляет собой двухпоршневой компрессор с пневматическим приводом. Поршни перемещаются под действием сжатого воздуха, поступающего поочередно в одну из приводных (бесштоковых ) камер. Реверсирование движения поршней осуществляется при достижении ими «мертвых точек» посредством встроенного 4/2-пневмораспределителя с двусторонним механическим управлением. Уровень давления на выходе задается с помощью регулятора давления и контролируется через канал обратной связи.
Давление, развиваемое усилителем, как правило, не превышает давления в пневмосети более чем в два раза, при этом расход сжатого воздуха, затрачиваемого на работу усилителя, составляет около 120% от расхода на его выходе.
Рис. 17. Установка усилителя давления с ресивером
Рис. 18. Блок плавного повышения давления
Схемное решение, изображенное на рисунке 18, в, позволяет осуществлять плавное (нерегулируемое ) повышение давления в системе до требуемого уровня через нерегулируемый дроссель клапана последовательности и плавный сброс (через регулируемый дроссель) воздуха из системы.
Часто для удобства эксплуатации такие блоки монтируют в составе блоков подготовки воздуха.
Помимо контроля положения исполнительных механизмов либо кинематически связанных с ними подвижных частей машин нередко требуется также формирование управляющих сигналов на основе информации о значении давления в определенных точках пневматической системы. В таких случаях говорят об управлении по давлению.
Рис. 19. Пневмоклапаны последовательности
Условные графические обозначения пневмоклапанов последовательности могут различаться в зависимости от их конструктивного исполнения. Так, клапан последовательности, показанный на рис. 19, а, представляет собой комбинацию предохранительного клапана с внешним управлением 1 и 3/2-пневмораспределителя с пневматическим управлением 7, включенных последовательно, что находит отражение в его условном обозначении. Напомним: штрихпунктирная линия, охватывающая обозначения нескольких пневматических элементов, указывает на то, что эти элементы не являются самостоятельными аппаратами, а входят в состав объединяющего их устройства.
Давление в канале управления X должно быть таким, чтобы усилие, возникающее на мембране 3, было достаточным для преодоления усилия настроечной пружины 2. Как только это условие выполняется, открывается пилотный клапан 4 и сжатый воздух начинает поступать к мембране 5 переключающего элемента 6 распределителя 7. При срабатывании данного элемента происходит переключение пневмораспределителя 7, в результате чего в канале А появляется сигнал. Усилие настроечной пружины можно изменить путем вращения регулировочного винта.
Клапан, изображенный на рис. 19, б, выполнен на базе 3/2-распределителя с пневматическим управлением. Порог срабатывания клапана настраивают смещением регулировочной втулки 3, на которую опирается пружина 2 приводного поршня 1. Перемещение втулки 3 сопровождается изменением усилия предварительного сжатия пружины 2 и обеспечивается вращением регулировочной гайки 4.
Следует обратить внимание на то, что активная площадь приводного поршня 1 (на которую воздействует контролируемое давление) резко увеличивается при его трогании с места из исходной позиции. Это означает, что даже постепенное повышение давления в канале X до некоторого порогового значения (величины настройки) приводит не к плавному перемещению управляющего поршня, а к его резкому переходу в выдвинутое положение, что обеспечивает четкое переключение пневмораспределителя.
При выборе клапанов последовательности необходимо принимать во внимание следующие технические характеристики:
— диапазон воспринимаемых давлений (максимальная и минимальная величины давления);
— стабильность работы (способность сохранять настройку давления срабатывания при многократных переключениях);
— величина гистерезиса (разница между давлением включения и давлением отключения);
— номинальный расход воздуха, протекающего через клапан.
Регулирующая пневмоаппаратура предназначена для изменения давления и расхода сжатого воздуха путем регулирования величины открытия проходного сечения. К этой группе пневмоаппаратуры относятся: пневмодроссели, редукционные и предохранительные пневмоклапаны.
Пневмодроссели предназначены для изменения расхода путем создания местного гидравлического сопротивления потоку сжатого воздуха.
Различают пневмодроссели постоянные (нерегулируемые), сопротивление которых (величина проходного сечения, форма или длина канала) не может быть изменено в процессе эксплуатации, и переменные (регулируемые), сопротивление которых можно изменять настройкой. Пневмодроссели используют главным образом для регулирования скорости пневмодвигателей и скорости заполнения или опорожнения емкостей в целях создания временных задержек.
Пневмодроссели обычно выполняют в виде отдельных регулируемых устройств и часто снабжают обратным клапаном, устанавливаемым параллельно дросселирующему узлу. В последнем случае эти устройства называют дросселями с обратным клапаном; они дросселируют поток воздуха только в одном направлении, а поток воздуха противоположного направления пропускают с небольшим сопротивлением, создаваемым обратным клапаном.
Разновидностью пневмодросселей являются выхлопные пневмодроссели, характерная особенность которых заключается в том, что их ввертывают непосредственно в присоединительное отверстие пневмораспределителя, из которого воздух выходит в атмосферу. Выходное отверстие выхлопного пневмодросселя может быть без присоединительной резьбы или с резьбой для ввертывания глушителя. При этом полость между дросселирующим узлом и резьбой под глушитель в выхлопном пневмодросселе может быть негерметичной.
Регулируемые пневмодроссели применяют с ручным и механическим управлением. В пневмодросселях с ручным управлением расход воздуха (сопротивление пневмодросселя) устанавливают в период наладки оборудования, и он остается неизменным при рабочем цикле.
В пневмодросселях с механическим управлением (называемых также тормозными пневмодросселями) расход воздуха зависит от величины перемещения управляющего элемента (штока, ролика), определяемого обычно профилем копира или кулачка, установленного на выходном звене пневмодвигателя, или на подвижной части автоматизируемого объекта. Таким образом, выбирая необходимый профиль копира, можно изменять сопротивление пневмодросселя на всей длине перемещения выходного звена пневмодвигателя (например, штока пневмоцилиндра), обеспечивая заданный закон движения, т. е. требуемую зависимость между скоростью и перемещением выходного звена.
Нерегулируемые пневмодроссели, как правило, являются частью других устройств. Когда необходимо точно обеспечить заданную величину сопротивления, пневмодроссели выполняют в виде калиброванных отверстий в деталях простой формы типа втулок или шайб, которые при необходимости можно легко заменить.