Для чего нужен светодиод
Что такое светодиод (устройство, параметры, маркировка)
Светодиод (led) – это полупроводниковый элемент, в котором при прохождении электрического тока создается видимое глазу оптическое излучение. В настоящее время такие устройства используются практически в любом приборе: телефоны, бытовая техника, автомобили, светильники и многие другие. Led-элементы потребляют гораздо меньше энергии, что важно для энергосбережения.
Разные типы светодиодов.
История создания светодиода.
Она насчитывает всего чуть больше ста лет. Первое упоминание о свечении диода относится к 1907 году. Английский физик Генри Раунд заметил разноцветное излучение при течении электричества через соединения карбид кремния-металл. Такое явление получило название электролюминесценция.
Спустя почти двадцать лет в 1923 году российский ученый Олег Лосев проводил подобные эксперименты в Нижнем Новгороде. Физик обнаружил свечение на месте контакта карбида кремния и стальной проволоки. Лосев опубликовал результаты своих исследований, и обосновал, что электролюминесценция наблюдается именно на границе соприкосновения разнородных материалов. Теоретическую базу под открытие подвести не смогли, и дальнейшего развития оно не получило. Хотя Лосев предсказал использование электролюминесценции для создания маломощных и миниатюрных источников света. Физик даже придумал конструкцию светового реле, но дальше исследования не продолжились.
В 1961 году, еще через сорок лет, американские изобретатели Д. Р. Байард и Г. Питтман придумали технологию выпуска светодиодов из арсенида галлия. В 1962 году они получили патент, и начался промышленный выпуск. Однако, их led-элемент испускал инфракрасное излучение, то есть был не видим человеческому глазу.
Но в том же 1962 году американский физик Ник Холоньяк изобрел красный светодиод. В 1971 году его соотечественник Жак Панков придумал синий. А в 1972 Джордж Крафорд открыл желтый led.
Впрочем, до семидесятых годов XX века светоизлучающие диоды оставались очень дорогими. Фирма «Монсанто» первой в мире удалось организовать массовое производство led в качестве индикатора.
В семидесятых годах группе советских ученых под начальством Ж. Алферова удалось синтезировать неизвестные до этого полупроводниковые вещества. Их начали получать на предприятиях и в лабораториях. А на основе этих соединений запустили серийное изготовление светодиодов.
В 1983 году Citizen Electronics придумала и внедрила на своих предприятиях светодиоды плоской конструкции (SMD).
В девяностые годы японские ученые И. Акасаки, Х. Амано и С. Накамура придумали, как значительно удешевить производство синих led. Технологию успешно опробовала фирма Nichia с 1993 года. А с 1996 года они начали изготовление белых led-элементов, чей свет получается из сочетания красного, синего и зеленого. В дальнейшем на базе открытия японских ученых стали стремительно развиваться новые методы производства световой техники: лампочек, дисплеев с подсветкой и других приборов.
В 2003 Citizen Electronics придумали новейшую технологию производства СОВ (Chip-On-Board). Она заключается в монтаже полупроводникового элемента на подложку при помощи специального непроводящего клея.
Очевидно, что история светоизлучающих диодов только набирает обороты, а технологии становятся все более совершенными.
Для создания разных цветов потребовалось много времени.
Принцип работы.
Схема появления излучения.
Под воздействием электричества электроны из n-слоя и дырки из р-слоя начинают двигаться к р-n-переходу. Происходит рекомбинация дырки и электрона — между р-n-границей протекает ток. Электроны переходят на низший энергетический уровень, с высоких орбиталей на более низкие. Освобождается энергия, которая излучается в виде фотонов.
Описанный процесс протекает во всех полупроводниковых диодах. Но длина волны фотона не всегда находится в заметном человеческому глазу спектре. Для появления видимости необходимо движение элементарных частиц в определенном интервале: от 400 до 700 нм. Это достигается подбором определенных химических веществ. У каждого есть особая длина волны и цвет излучения.
Самые удачные материалы получаются из соединений типа A III B V и A II B VI где II, III, V и VI – валентности элементов. Например, уже упоминавшийся арсенид галлия, фосфат индия или селенид цинка и теллурид кадмия. Подобные соединения называют прямозонными. Возможно получение разнообразных по свечению светодиодов: от ультрафиолетовых до инфракрасных.
К другой группе относятся непрямозонные полупроводники. Это карбид кремния, сам кремний, германий и другие. Диоды из них свет светят очень неярко. Впрочем, научные работы по использованию таких веществ продолжаются. Основные поиски решения ведутся в области технологий квантовых точек и фотонных кристаллов.
Кроме света при p-n-переходе освобождается еще и тепло. Для его отвода необходим теплоотвод (часто в этой роли выступает корпус изделия) или радиатор.
Виды и характеристики светодиодов.
Светоизлучающие диоды различают по конструкции корпуса:
Независимо от исполнения корпуса выделяют светодиоды:
Пропорциональное смешение цветов дает всевозможные оттенки света. Например, при включении на 100% красного и зеленого получится желтый.
Также led-элементы подразделяются на:
Инфракрасные диоды. Благодаря специально подобранным материалам проводников они испускают невидимые глазу инфракрасные лучи. Они безвредны для живых существ, но заметны для электронных систем регистрации. Востребованы во многих технических устройствах и станках во всевозможных отраслях промышленности.
Индикаторные led-диоды. Выступают в роли индикаторов для техники, подсветок дисплеев и т.п. Их делят по типу используемых полупроводников на:
Независимо от вида светодиоды характеризуются некоторыми параметрами.
Цвет излучения. Обусловлен химическим составом полупроводников. Некоторые вещества и соответствующие им цвета обозначены в таблице.
Яркость. Она пропорциональна силе тока, текущей сквозь элемент. Среди led-диоды, которые светят белым светом, выделяют яркие (20-25 милликандел) и сверхяркие (свыше 20 тысяч милликандел).
Сила тока. Светодиоды весьма чувствительны к силе тока. При превышении ее значения выше номинального led может перегореть. Поэтому не рекомендуется превышать максимальный прямой ток элемента. Точные значения для конкретного светодиода приводятся в техническом описании.
Падение напряжения. Характеризует допустимую разницу между величинами входного и выходящего напряжения. У значения напряжения для светодиодов есть максимальное значение, превышение которого приведет к поломке led. Значения указываются в техническом описании.
Угол рассеивания света. Определяется формой линзы, конструкцией кристалла и от используемых для изготовления кристалла веществ. Может меняться от 15 до 180 градусов.
Устройство светодиода.
Led-диод состоит из полупроводникового кристалла, который закреплен на подложке, корпуса с контактами и оптической системы.
Устройства индикаторных (DIP), плоских (SMD) и СОВ элементов различаются снаружи.
Конструктивное устройство DIP.
DIР-светодиод в разрезе.
В основании прибора монтируются контакты. Кристалл (один или несколько) закреплен на катоде. К кристаллу присоединяется проволока. Она соединяет полупроводники с анодом. Это необходимо для группировки двух проводников с различными типами проводимости. Сверху led-элемент герметично покрывается линзой. Корпус устройства изготавливается в виде цилиндра из эпоксидной смолы, край которого обрезан со стороны катода. Монтаж led-элемента происходит путем пайки длинных выводов.
Конструктивное устройство SMD.
SMD-светодиод в разрезе.
Корпус изготавливается параллелепипедом. Его основа – теплоотвод от кристалла. На нее монтируется полупроводниковый элемент. Контактный провод соединяет его с анодом. Контакты выполняются плоскими. Сверху элемент герметично накрывается линзой.
Конструктивное устройство СОВ.
COB-технология – новейшее направление в производстве.
Такие светоизлучающие диоды имеют в основании теплопроводящую подложку (обычно алюминиевую). На нее непроводящим клеем закрепляют полупроводниковые кристаллы, которые объединены по последовательно-параллельной схеме. Сверху все покрывается люминофором.
Такой тип led легко монтируется, выдает хороший световой поток и не искажает цвета. Востребованы в производстве небольших, ярких прожекторов и декоративной подсветки. В отличие от DIP и SMD способны работать при повышенных температурах. Но из-за своего устройства имеют меньший срок эксплуатации по сравнению.
Если на одной подложке смонтировано множество кристаллов, то такой led-элемент называется светодиодной матрицей.
Конструктивное устройство PCB Star.
Состоит из одного большого кристалла, который монтируется на алюминиевую подложку в форме звезды. За счет увеличенной площади кристалла повышается мощность светодиода. Упрощается его фокусировка. Поэтому РCB Star востребованы в производстве ярких источников света: от фонариков до прожекторов.
Вольт-амперная характеристика светодиода.
Она имеет нелинейный характер. Led начинает пропускать ток с определенного значения напряжения. Оно называется пороговым. Пороговый вольтаж определяется химическими соединениями полупроводников.
Синяя кривая описывает протекание электричества при прямом включении. Красная кривая — при обратном включении.
U MAX и U MAXОБР – предельно допустимые значения напряжений. При их превышении элемент сгорает.
U MIN – минимальное величина напряжения. Начинается свечение.
Интервал между минимальным и максимальным — рабочая зона. Именно в ней диод светоизлучается.
I MAX – предельное допустимое значение тока. При превышении светодиод перегорает.
Подключение светодиода.
Самым простым случаем подключения светодиода является подключение с резистором. Последний необходим для токоограничения, чтобы исключить перегорание led при скачках напряжения.
При подключении led-элементов по любой схеме не забывайте придерживаться полярности! Иначе полупроводниковый прибор не будет светить и перегорит.
Электрическая схема соединения светодиода (LED) и резистора (R).
При соединении нескольких светоизлучающих диодов возможны разные варианты их соединения.
Последовательное подключение.
Схема последовательного соединения.
Элементы соединяются последовательно с учетом полярности. В цепи значение тока постоянно, а напряжение на led-элементах суммируется.
Параллельное соединение.
В этом случае постоянным в цепи сохраняется напряжение, а силы тока на элементах складываются. У данного типа соединения есть недостаток. На разных светодиодах может быть неодинаковое падение напряжения. Поэтому ток на каком-нибудь элементе может превысить допустимый, что приведет к поломке.
Во избежание этого следует подключать к каждой параллельной цепи свой резистор.
Схема параллельного подключения.
Параллельно-последовательное соединение.
При подключении большого количества светодиодов стоит использовать параллельно-последовательную электрическую схему. При этом в параллельных ветках напряжение одинаковое.
Электрическая схема параллельно-последовательного соединения.
Производители светодиодов
В рейтинге производителей лидируют несколько фирм с мировым именем. Именно они выпускают самые качественные изделия на рынке.
Из российских производителей можно отметить «Оптоган» и «Светлана-Оптоэлектроника». Обе фирмы располагаются в Санкт-Петербурге и производят светотехнические изделия. Впрочем, кристаллы для выпуска продукции закупаются за рубежом.
Цветовая маркировка.
Маркировка led в мире не стандартизирована. Изготовитель сам решает, что он будет обозначать на корпусе.
Светодиоды российского производства маркируются цветовым кодом. Он состоит из цветных кружочков или черточек. Примеры маркировки приведены ниже на рисунке.
Цветовая маркировка российских индикаторных светодиодов.
Рассмотрим маркировку известных мировых производителей.
В качестве примера возьмем модель Luxeon Rebel. Она маркируется LXML-ABCD-EFGH. В этой аббревиатуре зашифровано следущее:
Фирма предлагает обозначение SSSCCC-BD-0000-NNNNN, где:
Достоинства и недостатки светодиодов
Интересные факты.
Получение белого цвета. Есть три варианта. Первый – по технологии RGB. Включение всех трех цветов на 100% дает белый цвет. Во втором случае на линзу наносят три люминофора: голубой, красный и зеленый. Третий вариант заключается в нанесении красного и зеленого люминофора на оптическую систему голубого светодиода.
Работа при повышенных температурах. С ростом температуры в области p-n-перехода уменьшается яркость свечения. Причем у красных и желтых падение яркости больше, чем у синих и зеленых. Поэтому нужно использовать хороший теплоотвод и не допускать эксплуатации led при повышенных температурах.
Как готовят полупроводники? В основном по технологии металлоорганической эпитаксии в атмосфере особо чистых газов. Выращиваются пленки толщиной от ангстремов до микрон. Разные слои легируются примесями, которые дадут слою высокую концентрацию электронов или дырок, то есть сформируют n или p структуру полупроводника. Зачем пленки травят, создают контакты к n и p слоям и делят на чипы нужных размеров.
Чем хороша СОВ-технология? Тем, что кристаллы монтируются на металлическую подложку, которая одновременно выполняет функции радиатора. Таким образом получают отличный теплоотвод непосредственно от полупроводникового кристалла. Дополнительно можно получить разную форму светодиода, разную гибкость и и.п.
Что такое светодиод (LED)
Что такое LED и с чем его едят?
В повседневной жизни мы очень часто встречаемся с аббревиатурой LED, например, когда речь заходит о дисплеях. Что же это такое? Так вот, с английского LED расшифровывается как Light Emitting Diode, что можно дословно перевести, как “диод, испускающий свет”. Теперь все становится намного понятнее. Значит это все-таки один из видов диода, а точнее даже его особый вид. Давайте попробуем разобраться, где в повседневной жизни мы встречаемся с такими диодами и как вообще они работают.
Чаще всего можно увидеть эти 3 буквы при просмотре характеристик техники, которая имеет дисплеи. Например, матрицы телевизоров, телефонов и мониторов довольно часто оснащаются именно LED подсветкой. Если говорить проще, то LED — это световой диод, или светодиод. Уже проще, верно? Так как же он работает?
Почему светодиоды вообще работают?
Начну с того, что светодиод очень напоминает диод с PN переходом. Он работает по такому же принципу, то есть пропускает ток в одном направлении и не пропускает в другом. Зачем это нужно? Если электроны будут двигаться в одном направлении, то будут создавать ток, который в дальнейшем и будет источником света.
Теперь подробнее именно про светодиод. Он устроен не сильно сложнее простого диода. Внутри находится полупроводник с высокой степенью легирования. Спектр излучения зависит от степени легирования и материала, из которого изготовлен полупроводник. Для того, чтобы светодиод работал, нужно воздействовать на него извне, то есть к полюсу p подается напряжение (это называется прямым смещением).
Далее все происходит следующим образом. Диод смещен в прямом направлении, поэтому электроны рекомбинируют с дырками из валентной зоны и высвобождается энергия, которой достаточно для производства фотонов. Эти самый фотоны излучают свет одного света (монохромный). Правда, слой очень тонкий, и поэтому большая часть фотонов покидает переход, тем самым создавая поток света из множества основных цветов видимого спектра.
А в чем же отличие от обычного диода?
Оказывается, световой диод все же отличается от обычного (сигнального) диода. Основное отличие, конечно же, заключается именно в конструкции. Так, у светодиода есть специальная полусферическая защита, которая хранит его от ударов и других механических воздействий извне. Также очень любопытен тот факт, что светодиодный переход самостоятельно излучает довольно мало фотонов. Именно по этой причине корпус светодиода специально делают из эпоксидной смолы, которая позволяет направить фотоны, идущие в другие стороны строго вверх.
Встречаются иногда и очень необычные формы светодиодов. Среди них и прямоугольная, и цилиндрическая и даже форма в виде стрелки. Все зависит от того, куда нужно концентрировать свет, а это зависит от цели, для которой этот светодиод создается.
В чем самые главные плюсы технологии LED?
Одной из главных особенностей светодиодов является его высокий КПД. Дело в том, что обычная лампа накаливания при работе выделяет очень много тепла, а вот светодиод, напротив, остается достаточно холодным. Все это происходит из-за того, что он в большую часть света производит именно в видимом для человека спектре и не расходует энергию на ненужные длины волн. Это позволяет технологии LED серьезно доминировать над уже устаревшими лампами накаливания. Кроме того, светодиоды гораздо меньше по размеру и их можно располагать благодаря этому как угодно и где угодно.
Можно выстраивать из них целые фигуры и даже программировать последовательность того, как они загорятся с помощью мини-компьютеров. Таким образом, это дает очень большой толчок для дальнейшего развития и совершенствования, но довольно лирики.
Какие цвета может излучать светодиод?
Многие заблуждаются в том, что светодиоды светят тем цветом, в который окрашен их корпус, хотя как мы уже говорили ранее, для регулировки цвета и регулировки его интенсивности нужно подбирать подходящий полупроводниковый материал. Именно он является определяющим фактором, если нужно подобрать цвет. Однако, светодиоды могут излучать не все цвета и есть точный спектр, который получить возможно.
Наиболее распространенные цвета — это красный, желтый, зеленый и оранжевый. Это все потому, что их легче производить, а соответственно и стоят они в разы дешевле ново появившихся синих и белых. Взгляните на эту таблицу, чтобы понять, какому напряжению соответствуют итоговые цвета:
Цвета, которые бывают у светодиодов
Давайте теперь подробно остановимся на конкретных материалах, которые влияют на выбор цвета:
Взглянув на этот список можно заметить, что для некоторых цветов подойдет сразу несколько полупроводников и это действительно так. Это уже сам производитель выбирает, какие полупроводники ему выбрать. Может быть, ему легче достать именно этот тип, а не другой, или он просто дешевле. Да, вот так много разных материалов нужно, чтобы создать даже очень простенький современный телевизор, например.
Подробнее про работу светодиода
Теперь, когда мы знаем достаточно много про работу светодиода, давайте еще немного поговорим о том, как он устроен изнутри. Каждый светодиод состоит из следующих деталей:
Каждая из этих деталей очень важна для работы светодиода. Но давайте поговорим о том, что каждый из них делает конкретно. Самые главные детали внутри светодиода — это катод и анод.
Светодиод (или led по другому)
Электроны идут от катода к аноду при подаче напряжения на устройство, благодаря чему электроны идут к PN переходу и там занимают свободные места. После этого электроны переходят на новый энергетический уровень, выделяется множество фотонов. Как мы уже говорили ранее, фотоны направляются вверх с помощью отражателя и рассеивателя.
Чем отличаются разные светодиоды и зачем нужен каждый из них?
Если говорить об основных видах LED или светодиодов, то это конечно же осветительные (используются для яркого света в помещении) и индикаторные (они для декоративных целей, например, чтобы украсить стадион или телебашню). Однако светодиоды также различают по типу конструкции:
Как можно подсоединять светодиоды
Когда мы уже знаем достаточно много о светодиодах, давайте узнаем, как можно объединять. Для этого нам нужно их соединить. Но каким образом можно это сделать и какой способ будет лучшим?
Попробуем подсоединить последовательно
Последовательное соединения нужно, если нужно массово увеличить количество освещенности (например, регулировка уровня яркости). Подсоединив светодиоды таким способом, они будут работать как один. Рекомендуем при этом использовать в цепочке светодиоды одного типа и даже одного цвета.
Последовательное соединение LED
Несмотря на то, что ток внутри светодиодов при последовательном подключении идет один и тот же, при установке резисторов нам точно придется учитывать, что напряжение тоже будет падать последовательно. Например, исходное напряжение равно 1.2 В на один светодиод, но тогда напряжение на всех n светодиодах будет уже n * 1.2. То есть если светодиодов 3, то общее падение будет уже 3.6 В. Так как же тогда посчитать падение напряжения на резисторах? Все очень просто. Давайте предположим, что все светодиоды будут питаться от одного и того же логического устройства с напряжением 5 В. Тогда:
Обращаю ваше внимание, что среди резисторов E12 не встречается сопротивления 140 Ом, поэтому придется вариант с 150 Ом.
Как же теперь включать и выключать светодиоды?
Когда мы знаем уже достаточно много о светодиодах, пришло время узнать, как можно легко управлять их включением и выключением. Здесь схемы будут немного сложнее. Для управления мы будем использовать выходные каскады CMOS и TTL (они регулируют напряжение при высоком кпд и почти без искажений). Дело в том, что они могут использоваться как источники, так и как приемники полезного тока. А это как раз дает нам возможность пользоваться ими, как включателями и выключателями. Взгляните на эти примеры:
Теперь вы знаете достаточно много про светодиоды. Если вам понравилась статья и вы хотели бы узнать о них еще больше, то мы будет очень рады узнать от вас эту информацию в комментариях.
Светодиоды можно купить на алишке, вот по этой ссылке.
Вот в передаче «Галилео» подробно рассказывают про светодиоды, можете посмотреть:
Светодиоды: виды и схема подключения
Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode).
Содержание статьи
Устройство светодиода
Хотя и существует множество светодиодов, самая распространённая форма состоит из 5-миллиметрового полимерного корпуса с линзой, медного или алюминиевого основания, катода, параболического рефлектора (отражателя) и кристалла, который соединяется с анодом при помощи тонкой золотой проволоки.
Как работает светодиод?
Принцип работы изделия основывается на взаимодействии двух полупроводников, положительного и отрицательного типа (p-n-переход). Когда электрический ток проходит через полупроводники, в месте соприкосновения выделяется энергия, излучающая свет. Это обусловлено переходом от одного типа проводимости к другому, когда ионы положительно заряженных дырок соединяются с отрицательными зарядами электронов.
Виды и основные параметры светодиодов
На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер. В продаже имеется большое количество типов светодиодов, которые различаются между собой функциональным назначением, конструкцией, мощностью, цветом свечения и другими свойствами.
По назначению светодиоды разделяют на два вида – индикаторные и осветительные.
Индикаторные светодиоды отличаются малой мощностью и умеренной яркостью свечения. Используются для цветовой индикации режимов работы различных приборов и оборудования, а также для подсветки дисплеев и приборных щитов. Разновидности индикаторных светодиодов:
Осветительные светодиоды встречаются в конструкции фонарей, фар, лент. Отличаются мощностью и яркостью свечения. Большинство осветительных приборов размещают в корпусах для SMT-монтажа. Изготавливаются в двух разновидностях белого цвета:
Осветительный SMD-светодиод представляет собой теплоотводящую подложку, на которой смонтирован излучающий кристалл, обработанный люминофорным составом.
Применение светодиодов
Такая продукция активно применяется в разных областях: световая реклама, домашние и промышленные осветительные приборы, автомобильная светотехника, светофоры и дорожные знаки, дизайн помещений, ландшафтная и архитектурная подсветка, а также многое другое.
Основные правила подключения светодиодов
Конструкция светодиодов рассчитана на их подключение только к источникам постоянного тока с соблюдением полярности. Существует три варианта определения полярности:
Основные характеристики светодиодов
Две главные характеристики, указываемы в паспорте светоизлучающего прибора:
Способы подключения
Простейший вариант – подключение к низковольтному источнику постоянного тока.
Самый удобный и безопасный вариант – подключить светодиод к батарейке или аккумулятору с помощью включения в схему маломощного резистора. Его функция – ограничение тока, протекающего через p-n-переход, определенным значением. Без этого элемента LED быстро утратит рабочие свойства.
Резистор выбирают по сопротивлению и мощности. Расчет сопротивления по формуле:
R = (Uпитания – Uпаспорт.)/Iном., Ом, в которой:
Полученное значение округляют в большую сторону до ближайшей номинальной величины из ряда Е24. После этого рассчитывают мощность, которую должен рассеивать резистор.
P = Iном. 2 х R, где R – выбранное по таблице значение сопротивления.
Провести все эти действия можно быстро и просто с использованием онлайн-калькулятора.
Как подключить светодиоды к сети переменного тока 220 В через блок питания
Существует несколько типов блоков питания:
Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение
При подключении нескольких светоизлучающих приборов к источнику питания может использоваться два варианта соединения – последовательное и параллельное.
Последовательное соединение представляет цепь полупроводниковых приборов, в которой катод первого излучателя спаян с анодом следующего – и так далее. Через все элементы последовательной цепи протекает ток одного значения, а падение напряжения суммируется. Мощность БП выбирается равной или превышающей сумму мощностей каждого элемента.
Минусы последовательного соединения:
В длинных лентах на 60-70 диодов на каждом элементе происходит падение напряжения примерно на 3 В, то есть такие ленты можно присоединять к сети 220 В через выпрямитель.
При параллельном подсоединении напряжение на всех элементах цепи будет равным, а суммируются токи каждого LED. Основная проблема в данном случае состоит в том, что LED-светильники, даже из одной партии, часто имеют различные характеристики. Поэтому, если поставить один общий резистор, на лампочки может подаваться ток разного значения, вследствие чего некоторые элементы будут светить слишком ярко, а некоторые – тускло. Решение проблемы – установка отдельных резисторов для каждого диода.
Минусы параллельного подключения:
Это самый подходящий вариант соединения светодиодов, поскольку он позволяет хотя бы частично скомпенсировать недостатки последовательного и параллельного подключений. В этом случае параллельно соединяются цепочки последовательно расположенных элементов. Этот способ применяется в современных елочных гирляндах или лентах. Преимущество такого решения: если даже выйдут из строя одна или несколько параллельных цепочек, остальные будут исправно светить.