Для чего нужны химические волокна
Химические свойства волокна — основные сведения
Виды волокон и их классификация
Волокно — это нить животного, растительного или минерального происхождения.
В производстве выделяют 3 вида волокна:
В биологии волокнами называют пищевые компоненты, не перевариваемые организмом при помощи пищеварительных ферментов. В медицине используют понятие нервных и мышечных волокон. Нервными являются отростки нейронов, покрытые глиальной оболочкой. Мышечными — основные компоненты ткани скелетной мышцы.
Свойства химических волокон
Химические волокна — это тонкие не пряденые нити, производимые из синтетических и природных органических полимеров, применяемые для изготовления текстильных материалов: трикотажных полотен, ниток, ткани, пряжи, искусственного меха, нетканых материалов.
Согласно современной классификации, химические волокна делятся на:
Искусственные волокна изготавливают из природных полимеров. Сырье для синтетических получают методом синтеза — известного в химии способа, предполагающего создание сложных молекул из простых.
Примерами синтетических карбоцепных волокон являются виналон (поливинилацетатное волокно), нитрон (акриловое волокно). Примерами гетероцепных — лайкра, спандекс, капрон.
По сравнению с натуральными химические нити обладают:
Кроме того, они более устойчивы к длительным нагрузкам, успешнее противостоят разрыву, воздействию влаги, ультрафиолета, бактерий, грибка, не теряют заданную форму.
Технология получения, производства химических волокон
Для получения нитей исходные твердые вещества преобразуют в жидкое состояние посредством нагрева или растворения в прядильном растворе. Затем полученное жидкое вещество продавливают сквозь спинарет — решето, для которого характерна исчерченность мелкими ячейками.
Ячейки спинарета называются фильерами. Их общее количество может достигать 40 тысяч. В зависимости от разновидности спинарета, фильеры могут быть квадратными, круглыми, треугольными ромбовидными. От того, к какому типу принадлежат фильеры, зависят характеристики будущего продукта, вид его поперечного сечения под микроскопом.
На следующем этапе продавленные через решето нити затвердевают в специальных камерах под воздействием воздуха или инертного газа. На некоторых производствах для этого используют мокрую среду, когда затвердевание происходит в процессе намокания в осадительных ваннах.
Следующие этапы технологии:
Отделка может означать удаление загрязнений и примесей, отбеливание, окрашивание, снятие наэлектризованности, придание шелковистости, мягкости.
Для удобства хранения, перевозки и реализации волокна наматываются в паковки и сортируются по толщине, фактуре, оттенку.
Сферы применения
Применение химических нитей актуально в разных сферах производства, промышленности. Их используют для:
Из них делают лежанки для животных, укрывной материал для растений, подгузники для детей. Их используют для производства автомобильных шин, в строении летательных аппаратов — для изготовления внутренней обшивки.
В некоторых случаях для расширения свойств и функций конечного изделия к химическим волокнам добавляют природные или же используют их в качестве соединительных элементов.
Для облегчения ориентирования и поиска существуют таблицы с международными кодами обозначения. Каждый тип помечается двумя английскими буквами: к примеру, GL — стекловолокно, PA — полиамид, PL — полиэстер.
Химические волокна
Химические волокна — волокна, получаемые из природных и синтетических органических полимеров.
Содержание
История
Производство первого в мире химического (искусственного) волокна было организовано во Франции в г. Безансоне в 1890 году и основано на переработке раствора эфира целлюлозы (нитрата целлюлозы), применяемого в промышленности при получении бездымного пороха и некоторых видов пластмасс.
Основные этапы в развитии химических волокон
Классификация химических волокон
В России принята следующая классификация химических волокон в зависимости от вида исходного сырья:
Иногда к химическим волокнам относят минеральные волокна, получаемые из неорганических соединений (стеклянные, металлические, базальтовые, кварцевые).
Искусственные волокна
Синтетические волокна
(в скобках приведены торговые названия)
Краткая характеристика методов получения
В промышленности химические волокна вырабатывают в виде [2] :
Первая стадия процесса производства любого химического волокна заключается в приготовлении прядильной массы (формовочного раствора или расплава), которую в зависимости от физико-химических свойств исходного полимера получают растворением его в подходящем растворителе или переводом его в расплавленное состояние.
Полученный вязкий формовочный раствор тщательно очищают многократным фильтрованием и удаляют твердые частицы и пузырьки воздуха. В случае необходимости раствор (или расплав) дополнительно обрабатывают — добавляют красители, подвергают «созреванию» (выстаиванию) и др. Если кислород воздуха может окислить высокомолекулярное вещество, то «созревание» проводят в атмосфере инертного газа.
Вторая стадия заключается в формовании волокна. Для формования раствор или расплав полимера с помощью специального дозирующего устройства подается в так называемую фильеру. Фильера представляет собой небольшой сосуд из прочного теплостойкого и химически стойкого материала с плоским дном, имеющим большое число (до 25 тыс.) маленьких отверстий, диаметр которых может колебаться от 0,04 до 1,0 мм.
При формовании волокна из расплава полимера тонкие струйки расплава из отверстий фильеры попадают в специальную шахту, где они охлаждаются потоком воздуха и затвердевают. Если формирование волокна производится из раствора полимера, то могут быть применены два метода: сухое формирование, когда тонкие струйки поступают в обогреваемую шахту, где под действием циркулирующего теплого воздуха растворитель улетучивается, и струйки затвердевают в волокна; мокрое формирование, когда струйки раствора полимера из фильеры попадают в так называемую осадительную ванну, в которой под действием различных содержащихся в ней химических веществ струйки полимера затвердевают в волокна.
Во всех случаях формирование волокна ведется под натяжением. Это делается для того, чтобы ориентировать (расположить) линейные молекулы высокомолекулярного вещества вдоль оси волокна. Если этого не сделать, то волокно будет значительно менее прочным. Для повышения прочности волокна его обычно дополнительно вытягивают после того, как оно частично или полностью отвердеет.
После формования волокна собираются в пучки или жгуты, состоящие из многих тонких волокон. Полученные нити при необходимости промывают, подвергают специальной обработке — замасливанию, нанесению специальных препаратов (для облегчения текстильной переработки), высушивают. Готовые нити наматывают на катушки или шпули. При производстве штапельного волокна нити режут на отрезки (штапельки). Штапельное волокно собирают в кипы.
Ссылки
Литература
Примечания
Природные (натуральные) |
| ||||
---|---|---|---|---|---|
Вискозные | Модал · Вискоза · Бамбук · Лиоцелл | ||||
Синтетические | Акрил · Арамид · Арселон · Нейлон · Лавсан · Микроволокно · Полиуретановые волокна · Кевлар · Пролен · Монокрил | ||||
Минеральные | Стекловолокно · Асбест · Углеродное волокно · Базальтовое волокно | ||||
Фибра |
Полезное
Смотреть что такое «Химические волокна» в других словарях:
Химические волокна — текстильные волокна и нити, вырабатываемые в заводских условиях путем формования их из природных или синтетических полимеров. Искусственные химические волокна получают из высокомолекулярных соединений, встречающихся в природе в готовом виде,… … Энциклопедия моды и одежды
Химические волокна — см. Волокна химические … Большая советская энциклопедия
химические волокна — см. Волокна химические … Энциклопедический словарь
ХИМИЧЕСКИЕ ВОЛОКНА — см. Волокна химические … Естествознание. Энциклопедический словарь
ХИМИЧЕСКИЕ ВОЛОКНА — см. в ст. Волокно … Большой энциклопедический политехнический словарь
Волокна искусственные — химические волокна, получаемые из природных органических полимеров. К В. и. относятся Вискозные волокна, Медноаммиачные волокна, Ацетатные волокна, Белковые искусственные волокна. Вискозные и медноаммиачные волокна, состоящие из… … Большая советская энциклопедия
Волокна синтетические — химические волокна, получаемые из синтетических полимеров. В. с. формуют либо из расплава полимера (полиамида (См. Полиамиды), полиэфира (См. Полиэфиры), полиолефина (См. Полиолефины)), либо из раствора полимера (Полиакрилонитрила,… … Большая советская энциклопедия
Волокна химические — Химические волокна волокна получаемые из продуктов химической переработки природных полимеров (искусственные волокна) или из синтетических полимеров (синтетические волокна). Производство (т. н. формование) химических волокон обычно заключается в … Википедия
Волокна искусственные — Химические волокна волокна получаемые из продуктов химической переработки природных полимеров (искусственные волокна) или из синтетических полимеров (синтетические волокна). Производство (т. н. формование) химических волокон обычно заключается в … Википедия
Волокна синтетические — Химические волокна волокна получаемые из продуктов химической переработки природных полимеров (искусственные волокна) или из синтетических полимеров (синтетические волокна). Производство (т. н. формование) химических волокон обычно заключается в … Википедия
ХИМИЧЕСКИЕ ВОЛОКНА
Автор:Л. С. ГАЛЬБРАЙХ
Задача создания удобной одежды, защищающей человека от внешней среды, возникла уже на самых ранних стадиях развития человеческого общества. Можно выделить по крайней мере три этапа решения этой задачи, принципиально отличающихся характером сырья, применяемого для изготовления одежды. На первом этапе одежду изготовляли из шкур животных и материалов, получаемых из стеблей растений (прообраза современных тканей); на втором были использованы материалы из природных волокон (хлопок, шерсть, лен, натуральный шелк). Мы являемся современниками третьего этапа, когда в качестве сырья для получения тканей, трикотажа, нетканых текстильных материалов, а также для производства разнообразных изделий технического назначения (канаты, сети, приводные и привязные ремни, резинотехнические изделия, фильтровальные материалы и многое другое) во все возрастающих количествах наряду с природными волокнами, а очень часто и вместо них, используют химические волокна.
ЭТАПЫ РАЗВИТИЯ ПРОИЗВОДСТВА, ОСНОВНЫЕ ТИПЫ И СПОСОБЫ ПОЛУЧЕНИЯ ХИМИЧЕСКИХ ВОЛОКОН
Что же такое химические волокна? Когда у человека возникла мысль о возможности замены природного текстильного сырья на материалы, создаваемые в условиях промышленного производства? Каковы основные признаки химических волокон, способы их получения и свойства? Для ответа на эти вопросы придется использовать понятия химии, и прежде всего химии высокомолекулярных соединений.
Впервые мысль о том, что человеком может быть создан процесс, подобный процессу получения натурального шелка, при котором в организме гусеницы шелкопряда вырабатывается вязкая жидкость, затвердевающая на воздухе с образованием тонкой прочной нити, была высказана французским ученым Р. Реомюром еще в 1734 году. Однако прошло около полутора столетий, прежде чем эта идея нашла свое практическое воплощение.
На первом этапе развития промышленности химических волокон в качестве волокнообразующих полимеров были использованы целлюлоза, составляющая основу большинства растительных организмов, и ее производные (табл. 1).
Производство первого в мире химического (искусственного) волокна было организовано во Франции в г. Безансоне в 1890 году и основано на переработке раствора эфира целлюлозы (нитрата целлюлозы), применяемого в промышленности при получении бездымного пороха и некоторых видов пластмасс. Однако вследствие пожаро- и взрывоопасности производства, невысокой прочности волокна (так называемого нитрошелка) эта технология не получила дальнейшего развития.
Как можно оценить этот объем производства? Велик он или мал? И почему таким мощным оказалось развитие промышленности синтетических волокон? Ответ на первую часть этого вопроса дают данные табл. 2.
Очевидно, что в настоящее время потребности как собственно текстильной промышленности, так и других отраслей, использующих ткани и изделия из волокон, пряжи, нитей, не покрываются производимыми природными волокнами. Сырьем для этих отраслей во все большей степени становятся химические волокна. Эти волокна, в особенности синтетические, уже не являются простыми заменителями природных, а очень часто превосходят их по свойствам, обеспечивая возможность создания материалов с новыми потребительскими свойствами (повышенными прочностью и эластичностью, несминаемостью, устойчивостью к действию химических реагентов и высоких температур и др.).
В то же время необходимо отметить, что из существующих видов химических волокон только искусственные, и прежде всего вискозные, благодаря их высокой гидрофильности и низкой электризуемости, обеспечивают возможность получения материалов с высокими гигиеническими характеристиками (ткани и трикотаж из вискозных нитей и пряжи и из смесей вискозных и синтетических полиамидных и полиэфирных волокон). Поэтому, несмотря на весьма динамичное развитие производства синтетических волокон, реальной альтернативы искусственным волокнам на основе целлюлозы нет. Вместе с тем совершенно очевидно, что дальнейшее развитие промышленности вискозных волокон может быть обеспечено только при условии успешного решения технологических и экологических проблем, что позволит снизить вредность этого производства.
В настоящее время на долю именно этих волокон, в особенности полиэфирных, приходится основной объем производства синтетических волокон (табл. 3).
Поистине неоценимым преимуществом технологического процесса получения полиамидных и полиэфирных волокон является возможность их формования из расплава полимера, что исключает необходимость применения (а следовательно, и регенерации) растворителей, а также обеспечивает высокие скорости формования.
Однако представления об ассортименте выпускаемых многотоннажных химических волокон будут далеко не полными, если они будут базироваться только на информации, содержащейся в табл. 1, поскольку этот перечень относится лишь к первым этапам становления и развития промышленности химических волокон. Так, весьма заметное место в современном ассортименте синтетических волокон занимают полипропиленовые волокна и нити, объем производства которых в последние годы быстро возрастал и составил около 3 млн. т в год. Производство полипропиленовых волокон стало возможным только после разработки метода синтеза стереорегулярных полимеров и, в частности, полипропилена, из высоковязкого расплава которого может быть сформовано волокно. Основное количество выпускаемых полипропиленовых волокон используется в техническом секторе для изготовления канатов, фильтровальных материалов, тарных тканей.
Все большее внимание привлекают эластомерные волокна (спандекс, лайкра), получаемые при переработке синтетических гетероцепных полимеров, относящихся к классу полиуретанов, синтезируемых, например, из гексаметилендиизоцианата и бутандиола-1,4:
Характерной особенностью этих волокон являются высокие, полностью обратимые деформации, что позволяет использовать их для изготовления эластичной и немнущейся спортивной одежды, купальных костюмов, колготок и т.п.
НЕКОТОРЫЕ ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ СОВЕРШЕНСТВОВАНИЯ И РАЗВИТИЯ ПРОИЗВОДСТВА ХИМИЧЕСКИХ ВОЛОКОН
Рассматривая современную ситуацию в области производства химических волокон, можно утверждать, что в ближайшее время основной ассортимент этих волокон сохранится, а новые виды волокон широкого назначения вряд ли появятся. В то же время в технологии целого ряда уже существующих волокон происходят весьма существенные изменения. К таким изменениям принципиального характера для волокон, формуемых из расплава, следует прежде всего отнести переход к высокоскоростному формованию.
Одной из важнейших проблем производства химических волокон является создание волокон и нитей, применяемых для изготовления материалов, используемых в экстремальных условиях и прежде всего при высоких механических нагрузках и повышенной температуре. Такие материалы определяют развитие многих направлений современной техники (изделия авиационной, космической и электропромышленности, защитная противобаллистическая и негорючая спецодежда и др.).
Для этих волокон характерно также высокое значение начального модуля (модуля упругости), что гарантирует сохранение размеров изделий даже при значительных механических нагрузках.
Понятие термостойкости включает прежде всего устойчивость химических связей в макромолекуле полимера в условиях воздействия повышенной температуры. К наиболее устойчивым к термическому воздействию структурам, обеспечивающим достаточно высокую термостойкость волокна (выше 400?С), относятся полностью ароматические макромолекулы или макромолекулы, содержащие конденсированные ароматические и гетероциклические группировки (табл. 4).
Объемы производства этих волокон значительно меньше, чем многотоннажных химических волокон (табл. 2), однако их роль в создании современных материалов, обеспечивающих технический прогресс различных отраслей народного хозяйства, поистине неоценима.
Представленный в статье материал ни в коей мере не претендует на полноту освещения всех проблем, связанных с получением и свойствами химических волокон и перспективами развития этой отрасли химической промышленности. Более детальная информация о технологических процессах производства отдельных видов химических волокон и их свойствах содержится в [1, 2].
Суммируя вышеизложенное, можно отметить, что наиболее характерными чертами развития промышленности химических волокон на современном этапе является устойчивый рост общего объема их производства за счет увеличения выпуска синтетических и прежде всего полиэфирных волокон, а также изменение и расширение ассортимента выпускаемой продукции, в том числе волокон специального назначения. Можно предположить, что будущее в промышленности химических волокон за предприятиями с гибкой технологией, способными быстро откликаться на изменяющиеся требования потребителей.
1. Юркевич В.В., Пакшвер А.Б. Технология производства химических волокон. М.: Химия, 1987. 304 с.
2. Перепелкин К.Е. Структура и свойства волокон. М.: Химия, 1985. 208 с.
Леонид Семенович Гальбрайх, доктор химических наук, профессор, заслуженный деятель науки России, заведующий кафедрой технологии химических волокон Московской государственной текстильной академии, автор четырех монографий и свыше 300 работ в отечественных и зарубежных научных журналах.
ЛЕКЦИЯ 6. ХИМИЧЕСКИЕ ВОЛОКНА.
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
ЛЕКЦИЯ 6. ХИМИЧЕСКИЕ ВОЛОКНА.
Впервые текстильные волокна химического происхождения стали производиться в конце 19 — начале 20 вв.
Химические волокна делятся на искусственные и синтетические. Сырьем для производства искусственных волокон служат древесная целлюлоза, отходы хлопка и шелка. Исходным продуктом для получения сырья при производстве синтетических волокон являются газы, продукты переработки нефти и каменного угля.
Искусственные волокна имеют тот же химический состав, что и исходное природное сырье. Синтетические волокна получают в результате химических реакций синтеза, т. е. превращения низкомолекулярных в высокомолекулярные путем укрупнения их молекул. В итоге производятся такие волокна, которых в природе не существует.
Процесс производства химических волокон включает пять этапов:
— получение и предварительная обработка сырья
— приготовление прядильного раствора или расплава
— формование волокна
— его отделка
— текстильная переработка
Исходное сырье растворяют или расправляют до состояния жидкой массы. Полученный таким образом прядильный раствор под давлением пропускают через фильеры — особые колпачки с различными фасонными отверстиями. Струйки прядильного раствора, застывая, образуют элементарные нити, которые затем соединяются в комплексные текстильные нити.
Отделка нитей из химических волокон может включать в себя следующие операции: промывку, сушку, крутку, техническую обработку для закрепления крутки, а также отбеливание или крашение.
Описанный способ получения химических волокон одинаков как для искусственных, так и для синтетических волокон.
Вискозные волокна. Исходным сырьем служит древесная целлюлоза, получаемая из ели, сосны, пихты, бука. Измельченная древесина отваривается в щелочном растворе. В результате образуется серая масса, которая отбеливается, освобождается от целлюлозных примесей, обрабатывается химическими реактивами, выдерживается 25-30 часов и затем подается на прядильные машины с фильерами.
В процессе отделки вискозные нити промываются, отбеливаются и окрашиваются. Двухцветная вискозная нить типа меланж образуется путем соединения двух окрашенных струек раствора. Такое волокно имеет оригинальный оптический эффект и широко применяется для изготовления трикотажных изделий.
Имея целлюлозную основу, вискозные волокна по своим физико-химическим свойствам сходны с хлопком. Так же как и натуральные, вискозные ткани имеют очень хорошие гигиенические показатели. По внешнему виду из-за блеска и мягкости нити вискоза напоминает шелк.
Вискозные волокна используются для производства сорочечных и плащевых тканей, тонких трикотажных полотен, швейных ниток, а также искусственного меха.
Ацетатные волокна. Сырьем служат отходы хлопка, которые обрабатываются уксусной кислотой и ее солями. В результате получается прядильный раствор из которого и получают волокна.
Ацетатные волокна содержат не чистую, а химическую связанную целлюлозу, поэтому их свойства несколько отличаются от свойств вискозных волокон. Ацетат имеет меньшую прочность волокон, которая к тому же сильно теряется в мокром виде. Ацетатные волокна реагируют на действие органических растворителей, используемых при химической чистке.
Ацетатные волокна значительно более упругие, поэтому ткани из них меньше сминаются, чем ткани из натуральных целлюлозных или вискозных волокон, но при этом их гигиенические качества намного хуже.
По внешнему виду ацетатные ткани напоминают шелковые, но менее тонкие и пластичные, чем последние. Ацетатные волокна широко используются для производства платьевых тканей, называемых искусственным шелком и трикотажных полотен.
Триацетатные волокна. По составу и свойствам аналогичны ацетатным волокнам. Они также вырабатываются из целлюлозы.
Триацетатные волокна обладают меньшей гигроскопичностью, чем вискозные и ацетатные они более жесткие семейные стойкие к истиранию. К недостаткам можно также отнести высокую электризуемость.
Но при этом при триацетатные волокна лучше реагиружт на свет и тепло, очень упругие, что позволяет получать ткани, которые не нуждаются в глажении. Кроме того, эти волокна мало загрязняются и быстро сохнут после намачивания.
Используются триацетатные волокна для производства платьевых, рубашечных, костюмных, подкладочных, галстучных тканей, а также трикотажных полотен.
Синтетические волокна
Синтетические волокна группируются в зависимости от полимера, из которого они изготовлены.
Полиамидные волокна. Из этой группы синтетических волокон наиболее широко применяется капрон. Исходное сырье для его производства — продукты переработки каменного угля (бензол и фенол).
Характерными свойствами полиамидных волокон являются легкость, упругость, высокая прочность при растяжении, стойкость к истиранию и многократным изгибам, высокая химическая и биологическая (действия микроорганизмов и плесени) стойкость.
К недостаткам волокон можно отнести их низкую гигроскопичность и малую термостойкость.
Горит капрон при поднесении к пламени, происходит тепловая усадка, затем плавление, в результате образуется смола и выделяется белый дым с запахом сургуча.
Капрон используется для изготовления тканей, чулочно-носочных изделий, ниток, кружев, отделочных материалов, он широко применяется также для технических целей.
Полиэфирные волокна. Самым широко используемым полиэфирным волокном является лавсан, который получают из продуктов переработки нефти.
По своим физическим и биологическим свойствам лавсан аналогичен капрону, но он разрушается концентрированными кислотами и щелочами. Как и капрон, лавсан обладает очень низкой гигроскопичностью, воздухо- и теплопроводностью. Горит лавсан слабо желтым пламенем, выделяя при этом копоть. При затухании образуется шарик чугунного цвета.
В чистом виде полиэфирные волокна используются для изготовления швейных ниток, кружевного полотна, ворса, искусственного меха. Чаще же всего они применяются в смесях с натуральными тканями, особенно шерстью, вискозными полотнами. Наличие лавсана в смешанных тканях улучшает их физические свойства: делает более прочными и несминаемыми. Кроме того, лавсан, будучи более термостойким, чем капрон, не создает особых сложностей при влажно-тепловой обработке этих тканей.
Полиолефиновые волокна. Наиболее известными и часто используемыми материалами из полиолефиновых волокон являются полиэтилен и полипропилен. Исходным сырьем для синтеза полиолефинов служат продукты переработки нефти — этилен и пропилен.
Полиэтилен и пропилен обладают очень высокими физическими показателями. Они очень устойчивы к воздействию химических реактивов и микроорганизмов. Полиолефиновые волокна абсолютно не пропускают воздух и влагу, их гигроскопичность равна 0%.
Из полиэтилена и полипропилена вырабатывают плащевые и декоративные ткани, ворс ковров, а также пленочные материалы технического назначения.
Полиуретановые волокна. К полиуретановым волокнам относятся комплексные нити спандекс.
Волокна спандекс схожи с другими синтетическими волокнами, но по своим физико-механическим свойствам они относятся к эластомерам, т. е. имеют очень высокие показатели эластического восстановления. После снятия растягивающей нагрузки спандекс почти сразу восстанавливает внешний вид.
Это свойство волокон спандекс используется при изготовлении тканей с эффектом «стрейч», трикотажа, а также материалов для спортивных, корсетных и лечебных изделий.
Контрольная работа.
1. Какова схема классификации волокон? (5 баллов)
2. Какой химический состав растительных, животных, искусственных и синтетических волокон? (20 баллов)
3. Какими физико-химическими свойствами обладают натуральные волокна растительного происхождения? (5 баллов)
4. Какими физико-химическими свойствами обладают натуральные волокна животного происхождения? В чем сходство и различие свойств шелка и шерсти? (5 баллов)
5. Какие этапы включает в себя процесс производства химических волокон? (5 баллов)
6. Что является исходным сырьем для получения искусственных и синтетических волокон? (5 баллов)
7. Какие группы искусственных волокон используются для создания одежды, область их применения? (5 баллов)
8. Какие группы синтетических волокон используются для создания одежды, область их применения? (5 баллов)