Для чего в топливо добавляется алкилат оксигенаты
Технологичность, экологичность и экономичность оксигенатных добавок к моторному топливу
В данной статье приведены результаты исследования бензиновой фракции, полученной путем «активации» нефтяного сырья, которые позволили выявить влияние волнового воздействия на изменение ряда физико-химических и эксплуатационных свойств бензина, представляющего интерес как компонента компаундированного моторного топлива.
Р. Ф. Хамидуллин, Х. Э. Харлампиди, Р. М. Никулин, Т. Л. Пучкова, А. Р. Бадрутдинова, М. М. Галиуллина, А. В. Ситало, ФГБОУ ВПО «КНИТУ»
Численность мирового автомобильного парка превышает 1 млрд единиц и увеличивается ежегодно, приблизительно, на 100 млн. В лидеры по производству автомобилей в мире вышел Китай, доля которого составляет 26,76%. Это, примерно, составляет суммарный объем выпуска автомобилей в Японии, Германии и США вместе взятых. Производство автомобилей в России сегодня на уровне Испании и Мексики. По данным Аналитического агентства «АВТОСТАТ» на 01.01.2015 г. в России насчитывалось 40,8 млн легковых и 8,1 млн коммерческих автомобилей. Рост автомобильного парка и, соответственно, потребности в топливах обуславливает решение ряда главных проблем: необходимость увеличения производства моторных топлив; переход на использование высокооктановых бензинов; ограничение или запрет на применение металлсодержащих антидетонационных добавок; сохранение нормальной экологии в условиях перехода с низкооктановых на высокооктановые моторные топлива; экономическая целесообразность разработки и производства более эффективных антидетонационных добавок и замена существующих на новые /1/.
Сегодня в России целесообразно осуществлять переход на производство автобензинов АИ-95 и АИ-98 с низкого Класса на Класс 6 как в Европе. Организация производства этих бензинов позволит обеспечить эксплуатацию современных автомобилей с нормами выбросов «Евро-6» и поставку на экспорт конкурентоспособной продукции нефтепереработки с высокой добавленной стоимостью /2/.
Добавки в бензин кислородсодержащие (оксигенаты)
Оксигенаты (добавки в бензин кислородсодержащие) – общее название низших спиртов и простых эфиров, применяемых в качестве высокооктановых компонентов моторных топлив, принятое в химмотологической литературе. Их вырабатывают из альтернативного топливам сырья: метанола, этанола, фракций бутиленов и амиленов, получаемых из угля, газа, растительных продуктов и тяжелых нефтяных остатков. Использование кислородсодержащих добавок в бензин расширяет ресурсы топлив и часто позволяет повысить их качество. Бензины с оксигенатами характеризуются улучшенными моющими свойствами, характеристиками горения, при сгорании образуют меньше оксида углерода и углеводородов.
Добавки в бензин кислородсодержащие: потребление в мире
Мировое кислородсодержащих добавок в бензин в 1996 г. составило около 21,5 млн т. Предполагается, что в 2000 г оно достигнет 25 млн т [54].
В России добавки в бензин кислородсодержащие вводятся только в автомобильные бензины, чему способствуют их хорошие антидетонационные свойства и температуры кипения, вписывающиеся во фракционный состав бензинов. В других странах, испытывающих недостаток нефтяного сырья, их пытаются использовать и в дизельных топливах, несмотря на плохую воспламеняемость, повышенную коррозионную агрессивность и низкую смазывающую способность.
Рекомендуемая концентрация оксигенатов в бензинах составляет 3-15% (об.) и выбирается с таким расчетом, чтобы содержание кислорода в топливе не превышало 2,7%. Установлено, что такое количество оксигенатов, несмотря на их более низкую по сравнению с бензином из нефти теплотворную способность, не оказывает отрицательного влияния на мощност- ные характеристики двигателей.
Показатели эффективности кислородсодержащих добавок в бензин
Добавки в бензин кислородсодержащие как компоненты автомобильных бензинов характеризуются прежде всего октановыми числами смешения, давлением насыщенных паров (Рнас) и теплотворной способностью. Эти показатели определяются стандартными методами. Однако при определении Рпас бензинов со спиртами следует учитывать хорошую растворимость спиртов в воде. В России используются два метода определения Рнас: в бомбе “по Райду” (ГОСТ 1756-52) и на приборе Валявского-Бударова (ГОСТ 6668-53). Для исследования топ- лив с оксигенатами пригоден метод Райда, так как во втором методе бензин контактирует с водой, используемой в качестве напорной жидкости.
Имеет практическое значение также гигроскопичность оксигенатов, т. е. способность “притягивать” влагу из воздуха. Она влияет на фазовую стабильность содержащих оксигенаты топливных смесей, что проявляется в виде помутнения топлив при пониженных температурах.
Ассортимент кислородсодержащих добавок в бензин
На практике используют спирты, простые эфиры, их смеси и спиртсодержащие отходы пищевых и нефтехимических производств. Последнее практикуется на малых предприятиях, выпускающих сравнительно небольшие количества топлива, хотя и не бывает обосновано необходимыми испытаниями.
Спирты характеризуются следующими показателями:
Примечание: в различных источниках могут встретиться значения показателей, несколько отличающиеся от приведенных выше.
Октановые числа смешения спиртов понижаются с увеличением длины углеводородного радикала (рис. 27) [55].
Метанол (МеОН) выпускают по ГОСТ 2222-78Е (метанол технический синтетический) в виде двух марок: А – как сырье для органического синтеза и поставок на экспорт и Б – для других целей. Показатели качества метанола, нормируемые стандартом, мы не рассматриваем.
В качестве добавки к бензинам метанол используется нечасто. Этому препятствуют его токсичность, плохая растворимость в углеводородах и высокая гигроскопичность. Как и все спирты, он отрицательно действует на уплотнительные материалы и коррозионно-агрессивен по отношению к цветным металлам. Последнее приводит, с одной стороны, к снижению ресурса деталей двигателя, а с другой – к ухудшению качества топлива*. В бензин можно вводить около 5% (об.) метанола; при этом бензометанольная смесь (БМС) остается гомогенной.
Бензонометальная смесь (БМС)
Добавки в бензин БМС приходится требуют решения проблемы их высокой чувствительности к влаге. БМС может растворить не более 0,1% (мае.) воды, при больших ее концентрациях смесь расслаивается, причем объем водно-метанольной фазы превышает объем добавленной воды. При охлаждении БМС сначала мутнеет, затем также расслаивается. Поэтому существует минимальная температура, при которой БМС может использоваться на практике.
Чтобы бензометанольные смеси не расслаивались, в них прибавляют в качестве стабилизаторов высшие спирты, например трет-бутиловый спирт (смесь трет-бутилового спирта и метанола называется оксинолом) или изобутиловый спирт. В России исследовались бензометанольные смеси БМС-5 и БМС-15 с содержанием метанола соответственно 5 и 15% (об), но к применению они допущены не были.
Добавки в бензин БМС-5 в принципе может использоваться в двигателях, но его стабильность невысока: срок хранения наиболее оптимальных составов, содержащих около 50% ароматических углеводородов, не превышает 3 мес. При этом должны обеспечиваться условия, исключающие попадание влаги. Если же БМС-5 хранится в контакте с атмосферным воздухом, то расслаивание наблюдается уже через несколько суток [56]. Перед расслаиванием БМС мутнеет. Температура помутнения также зависит от содержания ароматических углеводородов (рис. 28). На рис. 29 представлено предельное содержание воды в бензометанольных смесях при разных температурах в зависимости от содержания метанола в смеси [57]. Надо иметь в виду, что для приготовления БМС-5 следует использовать метанол, практически не содержащий влаги.
Все сказанное свидетельствует о невозможности использования добавки в бензин БМС-5 как топлива для автомобилей.
БМС-15 представляет собой товарный бензин, содержащий 15% метанола и 7-9% стабилизатора – изобутилового спирта. Его стабильность достаточно высока. На БМС-15 были разработаны временные ТУ 6.21-13-82 “Бензин метанольный”, в которых предусматривались те же требования к БМС, что и к бензину. Дополнительно устанавливались показатели: содержание воды – не более 0,1% (об.) и температура помутнения – не выше минус 45 °С. Введение 15% (об.) метанола в бензин несколько повышает давление насыщенных паров, плотность и увеличивает ОЧ. Другие показатели остаются практически неизменными [58]:
Чистый метанол также может использоваться как топливо для двигателей внутреннего сгорания, однако для этого они должны быть специально приспособлены.
Добавки в бензин этанолы (ЕЮН) в России выпускаются по нескольким нормативно-техническим документам. Технический этанол вырабатывают по ГОСТ 17299-78 (марки А и Б), требования которого мы не рассматриваем.
В качестве добавки в бензин этанол представляет больший интерес, чем метанол, так как лучше растворяется в углеводородах и менее гигроскопичен. Широко известно применение газохола (смеси бензина с 10-20% этанола) в США и Бразилии, располагающей большими ресурсами спирта, вырабатываемого из сахарного тростника. Вообще этанол представляет интерес в качестве добавки к топливу в странах, богатых растительными ресурсами, например в Украине. В России ВНИИ НП совместно с АвтоВАЗом проведены испытания автобензинов типа АИ-95 с 5-10% этанола.
Было установлено, что добавки в бензин 5% этанола к бензину не приводят к ухудшению эксплуатационных характеристик двигателя и не требует предварительной регулировки карбюратора. Одновременно наблюдается существенное снижение выбросов СО и небольшое – углеводородов. Увеличение концентрации этанола в бензине до 10% приводит к обеднению бензовоздушной смеси и ухудшает ездовые характеристики автомобиля практически на всех режимах [61]. Недостатком бензинов с этанолом является сравнительно низкая фазовая стабильность (температура помутнения составляет около минус 30 °С). Тем не менее, бензин типа АИ-95 с 5% этанола был рекомендован рабочей группой научной экспертизы к применению. На основе этих результатов разработана присадка ВОКЭ (ТУ 9291-001-32465440-98), представляющая собой технический этанол с содержанием воды до 5% и сивушных масел до 10%.
втор-Бутиловый спирт (s-BuOH) допущен к применению в отечественных автобензинах совместно с МТБЭ в концентрации до 10% (об.).
трет-Бутиловый спирт (7-ВиОН) самостоятельно в качестве добавки к топливам не применяется, но является компонентом широко используемого фэтерола, а также стабилизатором топ- ливометанольных смесей.
Эфиры, используемые в топливах, и их физико-химические характеристики представлены ниже:
Добавки в бензин МТБЭ по объему применения является основным оксигенатом в нашей стране и за рубежом. Это единственный эфир, допущенный к применению в России в качестве компонента автомобильных бензинов. Он вырабатывается на ряде предприятий по различным техническим условиям. Тем не менее технические требования к МТБЭ повсюду близки. Ниже представлены технические требования к МТБЭ по общесоюзным ТУ 38.103704-90:
Температура кипения МТБЭ – около 55 °С. В определенной степени это недостаток. Желательные температуры кипения оксигенатов – 70-90 °С, поскольку в этих пределах выкипают фракции товарных бензинов с наименьшим ОЧ. Этим требованиям удовлетворяет МТАЭ, который к применению в российских бензинах пока не допущен, хотя и испытан с положительным результатом. Технология производства МТАЭ освоена в ПО “Нижнекамскнефтехим”.
Смеси спиртов и простых эфиров
Фэтерол вырабатывается заводами синтетического каучука по ТУ 2421-009-04749189-95 в виде марок А (для поставки на экспорт) и Б (для выработки автобензинов):
Под торговым названием “Октан-115” фэтерол можно встретить в розничной продаже.
Ограничения и недостатки
Общим для всех оксигенатов является то, что их теплота сгорания ниже, чем углеводородов, поэтому их количество в топливе ограничивается возможностью работы двигателя без дополнительной регулировки. Эта концентрация в расчете на кислород не превышает 2,7%. Несколько уменьшается и пробег автомобиля на одной заправке, однако это уменьшение невелико.
БМС, как отмечалось выше, характеризуются повышенным давлением насыщенных паров. Поэтому при эксплуатационных испытаниях БМС-15, проводившихся в Ворошиловграде (Луганске) в 1982-1986 гг., летом отмечались случаи отказов двигателя из-за паровых пробок. В этих же испытаниях была выявлена несовместимость некоторых уплотнительных материалов с метанолом. Ниже представлено сравнительное количество отказов уплотнительных деталей [58]:
При использовании оксигенатов в 2-4 раза возрастают выбросы альдегидов и наблюдается тенденция к увеличению эмиссии оксидов азота. Метанол легко диффундирует через некоторые полимеры. С учетом этого необходимо подбирать материал топливопроводов (рис. 30) [62]. Что касается МТБЭ, то замечено, что он, просачиваясь из подземных резервуаров, загрязняет грунтовые воды.
Рис. 30. Диффузия топлив через трубопроводы при 60 °С: 1 – фторэластомер; бензин, содержащий 15% метанола; 2 – полиамид; бензин, содержащий 15% метанола; 3 – фторэластомер; бензин без метанола
Растворимость МТБЭ в воде при 20 °С составляет 4,8%. Впрочем, по мнению многих специалистов, это не экологическая проблема, а вопрос исправности резервуаров. Тем не менее в США применение МТБЭ начинают обусловливать определенными требованиями. Например, постановлено, чтобы трубопроводы и заправочные станции, работающие с МТБЭ, были расположены не ближе 300 м от источников питьевой воды [63]. Власти Калифорнии предложили чрезвычайно жесткое ограничение нормы на со¬держание МТБЭ в питьевой воде – не более 5 млрд-1, которое базируется не на медицинских показаниях, а на органолептических характеристиках воды (присутствие МТБЭ начинает ощущаться при концентрации 40 млрд-1) [64].
Еще одним недостатком, как отмечалось выше, является повышенная коррозионная агрессивность низших спиртов по отношению к цветным металлам. И хотя при эксплуатационных испытаниях существенной коррозии замечено не было, этому вопросу уделено достаточно много внимания. Установлено [65], что по интенсивности коррозии в спиртсодержащих топливах металлы располагаются следующим образом:
РЬ » Ст.З > Си > А1.
На присутствие спиртов в бензине они также реагируют неоднозначно. Ниже представлены данные по скорости коррозии металлов [в г/(м2 • ч)] в условиях испытания [65] в прямогонном бензине, содержащем 25% спиртовой композиции (ее состав: метанол – 40-65%; этанол – 9-24%; пропанолы – 6—16%; спирты С4-С5 – 20-45%):
Показано, что коррозию можно эффективно подавить специально подобранными присадками, которые мы подробно не рассматриваем, но приводим некоторые данные по их эффективности на рис. 31 I65I.
Токсичность и пожароопасные свойства оксигенатов
Для человека прием внутрь 5-10 мл вызывает тяжелое отравление, а 30 мл могут привести к смерти. Первая помощь заключается в удалении метанола из организма всеми возможными способами; промывание желудка и пр. Наиболее доступное и эффективное противоядие — этиловый спирт, вводимый внутривенно, а затем перорально малыми порциями. Он конкурирует с метанолом в реакциях с окисляющими ферментами.
Чаще всего отравление происходит при приеме внутрь, вредным такое является вдыхание паров и проникновение через неповрежденную кожу.
ПДК спиртов в мг’м3, принятые в России, представлены ниже:
Ниже приведены показатели пожарной опасности оксигенатов, из которых следует, что спирты и эфиры не более пожароопасны, чем бензин. Исключение составляет метанол, который характеризуется более широкими, чем у бензина, пределами КПВ. Верхний предел КПВ бензина — 5—7%. Из-за его высокой летучести концентрация паров над бензином обычно выше, чем 7%, вероятность воспламенения от случайной искры невелика. Верхний предел КПВ метанола превышает 36%.
Определение в топливах
Содержание оксигенатов в бензинах определяется методами жидкостной хроматографии и инфракрасной спектрометрии (ИКС). Для количественного определения МТБЭ в бензинах используется метод ИКС, разработанный в 25 НИИ МО РФ. Он заключается в измерении интенсивности полосы поглощения 1900 см и вычислении концентрации по заранее приготовленной градуировочной кривой. Метод позволяет определять МТВЭ при концентрации до 15% (об.). Сходимость определения — 0,38—0,67%. Во ВНИИ НП освоен более универсальный метод А$ТМ 05845-95, позволяющий измерять концентрацию сразу нескольких кислородсодержащих соединений при условии их совместного присутствия.
Он заключается в измерении интенсивности характеристических полос поглощения оксигенатов в средней области спектра и сравнении ее с эта лонными значениями. Используемые при этом спектрофотометры оснащены аналого-цифровыми преобразователями и процессорами и калиброваны, так что пользователю остается только заботиться о регулярной проверке правильности калибровки при помощи эталонов. Метод АSТМ 05845-95 позволяет определять концентрацию спиртов и эфиров в бензинах различного состава и в присутствии других оксигенатов. диапазон определяемых концентраций, а также сходимость и воспроизводимость результатов анализа представлены ниже:
Для определения в бензинах метанола в России используется метод жидкостной хроматографии, разработанный в НИИ МО РФ. Пробу бензина пропускают через колонку, заполненную индикаторным силикагелем размером частиц 0,05-0,10 мм. Силикагель предварительно обрабатывают 0,3%-м раствором хлорида кобальта. Концентрацию метанола вычисляют по длине зоны адсорбции спирта (более светлая, чем зона адсорбции бензина), используя градуировочньие кривые.
Экономика
Во ВНИИ НП выполнен расчет экономической зффекгивности использования МТБЭ в бензинах по сравнению с этилированньм и неэтилированным бензинами, а также с бензометанольными топливами. Ниже приведены составы этилированного бензина (образец 1) и неэтилированньих бензинов типа А.Я-93 и экономические показатели, приведенные к показателям этилированного бензина, взятым за 100%: себестоимость, удельные капитальные и энергетические затраты и энергетический КПД. Последний рассчитывался как отношение теплоты сгорания получаемого бензина к сумме теплоты сгорания сырья (нефти) и энергии, расходуемой при переработке [66].
В рассмотренных вариантах применение добавки в бензин МТБЭ и метанол были альтернативой использованию более дорогих высокооктановых компонентов: алкилата и изопентана. За счет этого себестоимость бензинов с оксигенатами сравнительно невелика, хотя и выше, чем себестоимость этилированного бензина. Наиболее дешевыми являются составы с метанолом, но их практическое применение невозможно из-за указанных выше недостатков. Если же вводить в состав дорогой стабилизатор, то его себестоимость резко увеличивается. Таким образом, из рассмотренных составов наиболее выгоден бензин с МТБЭ. Кроме того, при езде в городских условиях наблюдается его экономия до 7% [66].
Новые технологии производства высокооктановых бензинов
Прогрессивный рост технико-экономических и экологических показателей двигателей был бы невозможен без улучшения эксплуатационных свойств и показателей качества бензина. Данное улучшение обеспечивается новыми облагораживающими процессами получения бензиновых компонентов, вовлечением в состав бензинов кислородсодержащих соединений (оксигенатов), в том числе из возобновляемого растительного сырья, а также использованием присадок различного функционального назначения.
Автомобильный бензин является одним из наиболее многотоннажных продуктов нефтепереработки. Повсеместно востребованный и социально значимый автобензин претерпел за последний период большие изменения в компонентном, углеводородном и химическом составе в соответствии с постоянно растущими требованиями по качеству и экологической безопасности транспорта.
В последние годы в мире рост спроса на бензин в 1,5 раза меньше, чем на дизельное топливо, при этом наблюдается мировое снижение цен как на бензин, так и на дизельное топливо. Изменение рынка топлив происходит на фоне ужесточения экологических законов и повышения требований к качеству топлив. Мировое производство данного продукта составляет более одного миллиарда тонн в год. В ЕЭС разрешен только бензин Евро-5, который содержит пониженное количество серы, бензола, аренов и алкенов. Евро-6 отличается от Евро-5 повышенным содержанием кислорода.
В России же за 2014 год производство бензина составило около 38,3 млн.тонн, из которых 35,7 млн.тонн пошло на внутреннее потребление. Следует отметить, что в 2013 году было произведено на 1,0 % больше автомобильного бензина, чем в 2014 г. Снижение выработки бензина российскими НПЗ сопровождается увеличением спроса на бензин в России. Производство автомобильного бензина марки АИ-92 составило 65,4% от всего произведенного объема, а марки АИ-95 – 28,5%. По сравнению с 2011 годом производство бензинов класса 4 и 5 увеличилось в 3 раза и составило 79,6% (рис. 1).
С 1 января 2016 года в России, по требованиям Технического регламента на топлива, необходимо обеспечить выпуск топлива класса 5. В соответствии с прогнозом производства и потребления моторных топлив в РФ, к 2020 году возможно возникновение потенциального дисбаланса производства и потребления высокооктановых бензинов класса 5 в сторону выпуска недостаточного количества бензинов марок высокого качества. Автомобильный бензин класса 5 должен содержать бензола – не более 1,0 % об., серы – не более 10 ррм, ароматических углеводородов – не более 35 % об., олефиновых углеводородов – не более 14 % масс., кислорода – 2,7 % масс. До 100˚С перегоняется не менее 46 % об., а до 150 – не более 75 % об. Из технического регламента на сегодняшний день удалено требование по октановому числу для бензинов класса 3-5.
С 2014 года изменяется налоговое законодательство на топливо. Для бензинов предполагается снижение экспортных пошлин с 90% от пошлины на сырую нефть в 2014 году до 30% к 2017 году. В то же время с 2014 года увеличиваются налоговые ставки на бензины, не соответствующие классам 4 и 5, а с 2016 года на бензины, не соответствующие классу 5.
На протяжении последних ста лет компонентный, углеводородный и химический состав автомобильного бензина постоянно изменялся, обеспечивая непрерывное улучшение технико-экономических и экологических показателей двигателей внутреннего сгорания. Вместе с тем, в результате применения бензина в глобальном масштабе токсичные продукты его сгорания в автомобильных двигателях стали одними из главных и наиболее опасных источников загрязнения окружающей среды, губительно влияя на жизнь и здоровье людей, особенно в городах и густонаселенных районах. Кроме того, при сгорании каждого килограмма бензина расходуется более 14 кг чистого воздуха, а образующийся при сгорании углекислый газ вносит наибольший вклад в создание парникового эффекта и глобального потепления климата. Сотни нефтеперерабатывающих заводов, работающих в составе вертикально-интегрированных нефтяных компаний, оснащаются все большим количеством новых установок, в которых реализованы сложнейшие термокаталитические и химические процессы вторичной переработки нефтяных фракций для увеличения выхода и улучшения эксплуатационных свойств автомобильного бензина.
Автомобильный бензин по своему компонентному составу – один из наиболее сложных из всех нефтепродуктов. В зависимости от процессов переработки нефти, используемых на нефтеперерабатывающем заводе, и соответствующего набора установок в состав бензина может вовлекаться от восьми до двенадцати и более компонентов первичной и вторичной переработки нефти, что позволяет не только максимально увеличить выход бензина из перерабатываемой нефти, но и обеспечить высокий уровень его эксплуатационных, экологических свойств и соответствующих показателей качества, отвечающих требованиям современных автомобилей. К основным компонентам товарных бензинов относятся бензин каталитического крекинга, бензин риформинга, алкилат, бензин изомеризации, бензины гидропроцессов и кислородсодержащие добавки.
Процесс каталитического риформинга. Занимает ведущее место в производстве товарных бензинов. Для получения высокооктанового компонента в риформинге используют прямогонную бензиновую фракцию 85-180°C. Сущность процесса – превращение низкооктановых алканов в высокооктановые арены при высокой температуре и давлении на платинорениевом алюмооксидном катализаторе. Все современные катализаторы риформинга бензиновых фракций состоят из оксида алюминия, выполняющего роль активного носителя, и платины, которая обладает гидрирующими-дегидрирующими свойствами. В зависимости от свойств катализатора риформат имеет октановое число 97-103 (ОЧИ). Совершенствование катализаторов продолжается в основном в направлении увеличения выхода стабильного риформата и водорода, а также удлинения межрегенерационного цикла. Катализатор риформинга является бифункциональным: оксид алюминия обладает кислотными центрами, на которых протекают реакции изомеризации нафтеновых колец и гидрокрекинг парафинов (1-я функция). Платина, тонко диспергированная и равномерно нанесенная на поверхности носителя, положительно влияет на реакции дегидрирования и дегидроциклизации (2-я функция). Также промышленные катализаторы содержат 0,3 – 0,5 % (мас.) платины.
В мире известны несколько катализаторных компаний, производящих катализаторы риформинга. Это компании UOP(США), Axens(Франция) и Criterion(США). В России успешно конкурируют с ними Ангарская катализаторная фабрика (Россия, Ангарск) и “Промкатализ” (Россия, Рязань), вырабатывающие катализаторы риформинга на основе научно-исследовательских разработок институтов НПО “Нефтехим” (Краснодар) и ИППУ СО РАН.
Процесс каталитического крекинга. Вторым крупным источником высокооктанового компонента товарного бензина является процесс каталитического крекинга вакуумного газойля, хотя его бензин содержит высокий процент ароматических углеводородов и олефинов. Целевое назначение процесса – получение высокооктановых компонентов бензина и жирного газа из вакуумных газойлей или их смесей с мазутом. К основным факторам процесса, влияющим на выход и качество бензина, относят: катализатор, качество сырья, температуру, давление, объемную скорость подачи сырья и кратность циркуляции катализатора. На основе разработок ИНХС РАН, ОАО «ВНИПИнефть», ОАО «ВНИИНП» была создана новая технология каталитического крекинга вакуумного газойля. Основными преимуществами данной технологии являются гибкость переработки вакуумного газойля, выход бензина с концом кипения 205°C – 56% массы, суммарный выход пропан-пропиленовой и бутан-бутиленовой фракции, бензина и лёгкого газойля – 87,5% массы, октановое число по исследовательскому методу – 94,2, а также расход свежего катализатора – менее 0,5 кг/т. сырья. Также на основе научно-исследовательских разработок ИППУ СО РАН были созданы новые микросферические катализаторы крекинга вакуумного газойля ЛЮКС-1 и ЛЮКС-2. ЛЮКС-1 предназначен для переработки гидроочищенного утяжеленного вакуумного газойля с концом кипения до 580°C с целья получения максимального выхода бензина с высоким октановым числом. ЛЮКС-2 предназначен для переработки смесевого сырья, в том числе продуктов вторичного происхождения с концом кипения до 600°C, с целью получения максимального выхода светлых нефтепродуктов.
В ближайшее время, в 2015 году, планируется реконструкция установки каталитического крекинга на ОАО «Газпромнефть-Омский НПЗ» (2,5 млн.т/год) и строительство новой установки на ООО «ЛУКОЙЛ-Нижегороднефтеоргсинтез» (2,0 млн.т/год). Ввод в эксплуатацию установок каталитического крекинга на ОАО «Куйбышевский НПЗ» (1,2 млн.т/год), ОАО «Сызранский НПЗ» (1,2 млн.т/год), ОАО «Газпромнефтехим Салават» (1,0 млн.т/год) отложен на 2016 гг.
Производство изомеризата. Основное назначение процесса – повышение октанового числа изомеризата путем превращения парафинов в их изомеры, имеющие более высокое октановое число. Важнейшим потребительским свойством изомеризатов является минимальная разница между октановым числом по исследовательскому и моторному методам, обеспечивающая высокое значение дорожного октанового числа. Высокооктановый изомеризат можно считать наиболее подходящим компонентом товарного бензина, поскольку он увеличивает октановое число легкой части бензина, уменьшает в товарном бензине разницу между ОЧИ и ОЧМ, а также снижает общее содержание ароматических углеводородов, в том числе бензола. В процессе изомеризации применяют бифункциональные катализаторы, содержащие платину на оксиде алюминия, промотированном фтором или хлором, а также цеолиты, внесенные в матрицу оксида алюминия. На основе научно-исследовательских разработок компании ОАО НПП “Нефтехим” создана технология изомеризации лекгих бензиновых фракций (Изомалк-2 и Изомалк-4) с использованием катализаторов СИ-2 (рис. 2).
Выход изомеризата в данной технологии составляет 98-99% (об.), октановое число – 83-86 за проход. Основными преимуществами применяемого катализатора являются высокая активность катализатора при устойчивости к действию S, N, Н2О, низкий химический расход водорода, полная восстанавливаемость катализатора после регенерации и высокий срок службы (10 лет). В 2014 г. в России были введены установки изомеризации на ОАО «Новокуйбышевский НПЗ» (280 тыс. т/год), ОАО «Орскнефтеоргсинтез» (300 тыс. т/год) и ЗАО «Рязанская Рис. ННПК» (800 тыс.т/год), ОАО «Куйбышевский НПЗ» (280 тыс.т/год). В ближайшее время планируется строительство установок на ОАО «Астраханский ГПЗ» (800 тыс. т/год) и ОАО «Газпромнефтехим Слават» (474 тыс. т/год).,
2. Технологическая схема низкотемпературной изомеризации.
Перенесено на 2016-2019 гг. строительство установки изомеризации на ООО «Туапсинский НПЗ» (800 тыс. т/год).
Получение алкилата. Важнейшей составной частью товарных бензинов является алкилат, который по своим свойствам превосходит большинство высокооктановых компонентов. Для получения компонентов бензина практическое значение имеют только реакции углеводородов С3-С4. Легко алкилируется изобутан, обладающий подвижным водородом при третичном углеродном атоме. Алкилирование протекает с выделением теплоты и уменьшением объема. Чем выше молекулярная масса олефина, тем ниже должна быть температура. В отсутствии катализаторов реакция алкилирования при низких температурах практически не идет, поэтому широкое промышленное распространение получило каталитическое алкилирование. В ИНХС АН РФ был разработан процесс алкилирования на твердом катализаторе (рис. 3), который был апробирован на опытно-промышленной установке при следующих условиях: стационарный слой цеолитного катализатора ТЦМ-38, средней температурой 40-100 С, давлении 1,0-1,7 МПа, расходом катализатора 0,2 – 0,3 кг/т алкилбензина, октановым числом целевого алкилата 96-98(ОИМ), временем работы катализатора без регенерации до 48 часов, с осуществлением регенерации в потоке водорода.
В 2014 году на российских предприятиях было запущено две установки сернокислотного алкилирования: введена в строй новая установка на ОАО «Новоуфимский НПЗ» (450 тыс.т/год) и модернизирована с увеличением мощности до 120 тыс.т/год на ОАО «Славнефть-ЯНОС». В 2015 году планируется пуск установки фтористоводородного алкилирования из второй очереди комплекса глубокой переработки нефтяного сырья на ООО «ЛУКОЙЛ-Нижегороднефтеоргсинтез» мощностью 367 тыс.т/год. Ввод в действие запланированных установок алкилирования на ОАО «Ангарская НХК» (130 тыс. т/год) перенесен на 2016-2017 гг, а на ОАО «Сызранский НПЗ» (158 тыс.т/год) на 2016-2018 гг.
Кислородсодержащие компоненты. В автомобильный бензин, в первый среди всех видов топлив, стали вовлекать альтернативные кислородсодержащие синтетические компоненты, в том числе биокомпоненты из возобновляемого растительного сырья. Сегодня во всех развитых странах оксигенаты рассматриваются как основная альтернатива металлорганическим и аминовым добавкам к бензинам. На практике используют: метанол, этанол, метил-трет-бутиловый эфир (МТБЭ), этил-трет-бутиловый эфир (ЭТБЭ), метил-трет-амиловый эфир (ТАМЭ) и др.
Наиболее востребован в промышленности в России МТБЭ. Потребление МТБЭ запрещено в США, сокращено в скандинавских странах и Западной Европе в целом до 9,7 млн.т/год в 2013 году с тенденцией дальнейшего снижения на 3-5% в год. В Европе наибольшие мощности по производству МТБЭ в Великобритании, Нидерландах и Бельгии. В России производство МТБЭ составляет 0,8 млн.т./год. В основном это предприятия ОАО «Сибур» и группа компаний «Титан». Прогноз производства октанповышающих добавок представлен в таблице 2. Потребление в России составило 0,5 млн.т/год, остальное производилось на экспорт. Прогноз спроса на октанповышающие добавки представлен в таблице 3.
Введение кислородсодержащих добавок в состав бензина позволяет повысить их детонационную стойкость, так как увеличение концентрации кислорода в топливе снижает теплоту сгорания топливовоздушной смеси, а следовательно, замедляется распад пероксидных радикалов, происходит более быстрый отвод тепла из камеры сгорания, и в результате падает максимальная температура горения.
1) Капустин В.М., Технология производства автомобильных бензинов // М.:Химия. – 2015. – С. 84 – 115.
2) Алиев Р. Р., Катализаторы и процессы переработки нефти // М.: Химия. – 2010. – С.10-13.
3) Глаголева О.Ф., Капустин В.М., Технология переработки нефти: В 2 ч. Часть 1. Первичная переработка нефти // М.: КолосС. – 2006. – С. 56-64.
4) Данилов А.М., Применение присадок в топливах // М.: Мир. – 2005. – С. 23-27.
5) Емельянов В.И., Скворцов В.Н., Моторные топлив: антидетонационные свойства и воспламеняемость // М.: Техника, ТУМА ГРУПП. – 2006. – С.97-102.
6) Капустин В.М., Чернышева Е.А., Основные каталитические процессы переработки нефти // М.: Калвис. – 2006. – С. 44-47.
7) Капустин В.М., Нефтяные и альтернативные топлива с присадками и добавками // М.: КолосС. – 2008. – С.115-117.