Докажите что если в правильную усеченную четырехугольную пирамиду можно вписать сферу
Комбинация шара с другими телами
Разделы: Математика
Тема “Разные задачи на многогранники, цилиндр, конус и шар” является одной из самых сложных в курсе геометрии 11 класса. Перед тем, как решать геометрические задачи, обычно изучают соответствующие разделы теории, на которые ссылаются при решении задач. В учебнике С.Атанасяна и др. по данной теме (стр. 138) можно найти только определения многогранника, описанного около сферы, многогранника, вписанного в сферу, сферы, вписанной в многогранник, и сферы, описанной около многогранника. В методических рекомендациях к этому учебнику (см. книгу “Изучение геометрии в 10–11-х классах” С.М.Саакяна и В.Ф.Бутузова, стр.159) сказано, какие комбинации тел рассматриваются при решении задач № 629–646, и обращается внимание на то, что “при решении той или иной задачи прежде всего нужно добиться того, чтобы учащиеся хорошо представляли взаимное расположение указанных в условии тел”. Далее приводится решение задач №638(а) и №640.
Учитывая все выше сказанное, и то, что наиболее трудными для учащихся являются задачи на комбинацию шара с другими телами, необходимо систематизировать соответствующие теоретические положения и сообщить их учащимся.
1. Шар называется вписанным в многогранник, а многогранник описанным около шара, если поверхность шара касается всех граней многогранника.
2. Шар называется описанным около многогранника, а многогранник вписанным в шар, если поверхность шара проходит через все вершины многогранника.
3. Шар называется вписанным в цилиндр, усеченный конус (конус), а цилиндр, усеченный конус (конус) – описанным около шара, если поверхность шара касается оснований (основания) и всех образующих цилиндра, усеченного конуса (конуса).
(Из этого определения следует, что в любое осевое сечение этих тел может быть вписана окружность большого круга шара).
4. Шар называется описанным около цилиндра, усеченного конуса (конуса), если окружности оснований (окружность основания и вершина) принадлежат поверхности шара.
(Из этого определения следует, что около любого осевого сечения этих тел может быть описана окружность большего круга шара).
Общие замечания о положении центра шара.
1. Центр шара, вписанного в многогранник, лежит в точке пересечения биссекторных плоскостей всех двугранных углов многогранника. Он расположен только внутри многогранника.
2. Центр шара, описанного около многогранника, лежит в точке пересечения плоскостей, перпендикулярных ко всем ребрам многогранника и проходящих через их середины. Он может быть расположен внутри, на поверхности и вне многогранника.
Комбинация шара с призмой.
1. Шар, вписанный в прямую призму.
Теорема 1. Шар можно вписать в прямую призму в том и только в том случае, если в основание призмы можно вписать окружность, а высота призмы равна диаметру этой окружности.
Следствие 1. Центр шара, вписанного в прямую призму, лежит в середине высоты призмы, проходящей через центр окружности, вписанной в основание.
Следствие 2. Шар, в частности, можно вписать в прямые: треугольную, правильную, четырехугольную (у которой суммы противоположных сторон основания равны между собой) при условии Н = 2r, где Н – высота призмы, r – радиус круга, вписанного в основание.
2. Шар, описанный около призмы.
Теорема 2. Шар можно описать около призмы в том и только в том случае, если призма прямая и около ее основания можно описать окружность.
Следствие 1. Центр шара, описанного около прямой призмы, лежит на середине высоты призмы, проведенной через центр круга, описанного около основания.
Следствие 2. Шар, в частности, можно описать: около прямой треугольной призмы, около правильной призмы, около прямоугольного параллелепипеда, около прямой четырехугольной призмы, у которой сумма противоположных углов основания равна 180 градусов.
Из учебника Л.С.Атанасяна на комбинацию шара с призмой можно предложить задачи № 632, 633, 634, 637(а), 639(а,б).
Комбинация шара с пирамидой.
1. Шар, описанный около пирамиды.
Теорема 3. Около пирамиды можно описать шар в том и только в том случае, если около ее основания можно описать окружность.
Следствие 1. Центр шара, описанного около пирамиды лежит в точке пересечения прямой, перпендикулярной основанию пирамиды, проходящей через центр окружности, описанной около этого основания, и плоскости, перпендикулярной любому боковому ребру, проведенной через сере дину этого ребра.
Следствие 2. Если боковые ребра пирамиды равны между собой (или равно наклонены к плоскости основания), то около такой пирамиды можно описать шар.Центр этого шара в этом случае лежит в точке пересечения высоты пирамиды (или ее продолжения) с осью симметрии бокового ребра, лежащей в плоскости бокового ребра и высоты.
Следствие 3. Шар, в частности, можно описать: около треугольной пирамиды, около правильной пирамиды, около четырехугольной пирамиды, у которой сумма противоположных углов равна 180 градусов.
2. Шар, вписанный в пирамиду.
Теорема 4. Если боковые грани пирамиды одинаково наклонены к основанию, то в такую пирамиду можно вписать шар.
Следствие 1. Центр шара, вписанного в пирамиду, у которой боковые грани одинаково наклонены к основанию, лежит в точке пересечения высоты пирамиды с биссектрисой линейного угла любого двугранного угла при основании пирамиды, стороной которого служит высота боковой грани, проведенная из вершины пирамиды.
Следствие 2. В правильную пирамиду можно вписать шар.
Из учебника Л.С.Атанасяна на комбинацию шара с пирамидой можно предложить задачи № 635, 637(б), 638, 639(в),640, 641.
Комбинация шара с усеченной пирамидой.
1. Шар, описанный около правильной усеченной пирамиды.
Теорема 5. Около любой правильной усеченной пирамиды можно описать шар. (Это условие является достаточным, но не является необходимым)
2. Шар, вписанный в правильную усеченную пирамиду.
Теорема 6. В правильную усеченную пирамиду можно вписать шар в том и только в том случае, если апофема пирамиды равна сумме апофем оснований.
На комбинацию шара с усеченной пирамидой в учебнике Л.С.Атанасяна есть всего лишь одна задача (№ 636).
Комбинация шара с круглыми телами.
Теорема 7. Около цилиндра, усеченного конуса (прямых круговых), конуса можно описать шар.
Теорема 8. В цилиндр (прямой круговой) можно вписать шар в том и только в том случае, если цилиндр равносторонний.
Теорема 9. В любой конус (прямой круговой) можно вписать шар.
Теорема 10. В усеченный конус (прямой круговой) можно вписать шар в том и только в том случае, если его образующая равна сумме радиусов оснований.
Из учебника Л.С.Атанасяна на комбинацию шара с круглыми телами можно предложить задачи № 642, 643, 644, 645, 646.
Для более успешного изучения материала данной темы необходимо включать в ход уроков устные задачи:
1. Ребро куба равно а. Найти радиусы шаров: вписанного в куб и описанного около него. (r = a/2, R = a3).
2. Можно ли описать сферу (шар) около: а) куба; б) прямоугольного параллелепипеда; в) наклонного параллелепипеда, в основании которого лежит прямоугольник; г) прямого параллелепипеда; д) наклонного параллелепипеда? (а) да; б) да; в) нет; г) нет; д) нет)
3. Справедливо ли утверждение, что около любой треугольной пирамиды можно описать сферу? (Да)
4. Можно ли описать сферу около любой четырехугольной пирамиды? (Нет, не около любой четырёхугольной пирамиды)
5. Какими свойствами должна обладать пирамида, чтобы около нее можно было описать сферу? (В её основании должен лежать многоугольник, около которого можно описать окружность)
6. В сферу вписана пирамида, боковое ребро которой перпендикулярно основанию. Как найти центр сферы? (Центр сферы – точка пересечения двух геометрических мест точек в пространстве. Первое – перпендикуляр, проведённый к плоскости основания пирамиды, через центр окружности, описанной около него. Второе – плоскость перпендикулярная данному боковому ребру и проведённая через его середину)
7. При каких условиях можно описать сферу около призмы, в основании которой – трапеция? (Во-первых, призма должна быть прямой, и, во-вторых, трапеция должна быть равнобедренной, чтобы около неё можно было описать окружность)
8. Каким условиям должна удовлетворять призма, чтобы около нее можно было описать сферу? (Призма должна быть прямой, и её основанием должен являться многоугольник, около которого можно описать окружность)
9. Около треугольной призмы описана сфера, центр которой лежит вне призмы. Какой треугольник является основанием призмы? (Тупоугольный треугольник)
10. Можно ли описать сферу около наклонной призмы? (Нет, нельзя)
11. При каком условии центр сферы, описанной около прямой треугольной призмы, будет находится на одной из боковых граней призмы? (В основании лежит прямоугольный треугольник)
13. Около правильной пирамиды описана сфера. Как расположен ее центр относительно элементов пирамиды? (Центр сферы находится на перпендикуляре, проведенном к плоскости основания через его центр)
14. При каком условии центр сферы, описанной около прямой треугольной призмы, лежит: а) внутри призмы; б) вне призмы? (В основании призмы: а) остроугольный треугольник; б) тупоугольный треугольник)
15. Около прямоугольного параллелепипеда, ребра которого равны 1 дм, 2 дм и 2 дм, описана сфера. Вычислите радиус сферы. (1,5 дм)
16. В какой усеченный конус можно вписать сферу? (В усечённый конус, в осевое сечение которого можно вписать окружность. Осевым сечением конуса является равнобедренная трапеция, сумма её оснований должна равняться сумме её боковых сторон. Другими словами, у конуса сумма радиусов оснований должна равняться образующей)
17. В усеченный конус вписана сфера. Под каким углом образующая конуса видна из центра сферы? (90 градусов)
18. Каким свойством должна обладать прямая призма, чтобы в нее можно было вписать сферу? (Во-первых, в основании прямой призмы должен лежать многоугольник, в который можно вписать окружность, и, во-вторых, высота призмы должна равняться диаметру вписанной в основание окружности)
19. Приведите пример пирамиды, в которую нельзя вписать сферу? (Например, четырёхугольная пирамида, в основании которой лежит прямоугольник или параллелограмм)
20. В основании прямой призмы лежит ромб. Можно ли в эту призму вписать сферу? (Нет, нельзя, так как около ромба в общем случае нельзя описать окружность)
21. При каком условии в прямую треугольную призму можно вписать сферу? (Если высота призмы в два раза больше радиуса окружности, вписанной в основание)
22. При каком условии в правильную четырехугольную усеченную пирамиду можно вписать сферу? (Если сечением данной пирамиды плоскостью, проходящей через середину стороны основания перпендикулярно ей, является равнобедренная трапеция, в которую можно вписать окружность)
23. В треугольную усеченную пирамиду вписана сфера. Какая точка пирамиды является центром сферы? (Центр вписанной в данную пирамиду сферы находится на пересечении трёх биссектральных плоскостей углов, образованных боковыми гранями пирамиды с основанием)
24. Можно ли описать сферу около цилиндра (прямого кругового)? (Да, можно)
25. Можно ли описать сферу около конуса, усеченного конуса (прямых круговых)? (Да, можно, в обоих случаях)
26. Во всякий ли цилиндр можно вписать сферу? Какими свойствами должен обладать цилиндр, чтобы в него можно было вписать сферу? (Нет, не во всякий: осевое сечение цилиндра должно быть квадратом)
27. Во всякий ли конус можно вписать сферу? Как определить положение центра сферы, вписанной в конус? (Да, во всякий. Центр вписанной сферы находится на пересечении высоты конуса и биссектрисы угла наклона образующей к плоскости основания)
Автор считает, что из трех уроков, которые отводятся по планированию на тему “Разные задачи на многогранники, цилиндр, конус и шар”, два урока целесообразно отвести на решение задач на комбинацию шара с другими телами. Теоремы, приведенные выше, из-за недостаточного количества времени на уроках доказывать не рекомендуется. Можно предложить учащимся, которые владеют достаточными для этого навыками, доказать их, указав (по усморению учителя) ход или план доказательства.
Автор надеется, что материал этой статьи поможет молодым коллегам при подготовке к урокам по данной теме.
Сфера, вписанная в пирамиду
Биссекторная плоскость. Основное свойство биссекторной плоскости
Определение 1. Биссекторной плоскостью двугранного угла называют такую плоскость, которая проходит через ребро двугранного угла и делит этот угол на два равных двугранных угла (рис. 1).
Утверждение 1. Точка, расположенная внутри двугранного угла, находится на одном и том же расстоянии от граней этого угла тогда и только тогда, когда она лежит на биссекторной плоскости.
Таким образом, справедливость утверждения вытекает из соответствующих теорем о свойствах биссектрисы угла. Доказано.
Следствие 1. Если сфера, расположенная внутри двугранного угла, касается каждой из плоскостей граней этого угла, то центр сферы находится на биссекторной плоскости двугранного угла (рис. 3).
Сфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы
Определение 2. Сферой, вписанной в пирамиду, называют такую сферу, которая касается плоскостей всех граней пирамиды, причем точки касания лежат на гранях пирамиды (рис. 4).
Определение 3. Если сфера вписана в пирамиду, то пирамиду называют описанной около сферы.
Если сфера вписана в пирамиду, то она касается граней каждого внутреннего двугранного угла, образованного соседними гранями пирамиды. В соответствии со следствием 1 центр вписанной в пирамиду сферы должен находиться в точке пересечения биссекторных плоскостей всех внутренних двугранных углов, образованных соседними гранями пирамиды.
Если у пирамиды нет точки, в которой пересекаются биссекторные плоскости всех внутренних двугранных углов, образованных соседними гранями пирамиды, то в такую пирамиду нельзя вписать сферу.
Замечание 1. Для того, чтобы проверить, можно ли в пирамиду вписать сферу, достаточно проверить, существует ли точка пересения биссекторных плоскостей всех внутренних двугранных углов при основании пирамиды. Если такая точка существует, то она будет равноудалена как от основания пирамиды, так и от каждой из боковых граней.
Рассмотрим несколько типов пирамид, в которые можно вписать сферу.
Катет OB прямоугольного треугольника SOB выражается через высоту пирамиды h и угол φ по формуле
Катет OO’ прямоугольного треугольника OO’B выражается через высоту пирамиды h и угол φ по формуле
Поскольку длина отрезка OO’ не зависит от выбора боковой грани пирамиды, то биссекторные плоскости всех внутренних двугранных углов при основании пирамиды пересекаются в точке O’, которая и является центром вписанной в пирамиду сферы.
Доказательство утверждения 2 завершено.
Поскольку у любой правильной пирамиды все внутренние двугранные углы при основании равны, то справедливо
Следствие 2. В любую правильную пирамиду можно вписать сферу, причем ее радиус R выражается через высоту пирамиды h и внутренний двугранный угол при основании пирамиды φ по формуле
(1) |
Буквой R на рисунке 7 обозначен радиус вписанной в пирамиду сферы, буквой r – радиус вписанной в основание пирамиды окружности, а буквой φ – внутренний двугранный угол при основании пирамиды. Из прямоугольного треугольника OSB получаем
(2) |
В силу следствия 2 из формул (1) и (2) получаем
из формулы (3) получаем соотношение
Ответ.
Следствие 3. Радиус сферы, вписанной в правильную треугольную пирамиду с высотой h и ребром основания a, равен
Следствие 4. Радиус сферы, вписанной в правильный тетраэдр с ребром a, равен
Следствие 5. Радиус сферы, вписанной в правильную четырехугольную пирамиду с высотой h и ребром основания a, равен
Следствие 6. Радиус сферы, вписанной в правильную шестиугольную пирамиду с высотой h и ребром основания a, равен
Сфера, вписанная в треугольную пирамиду.
Формула для радиуса вписанной сферы
Утверждение 3. В любую треугольную пирамиду можно вписать сферу.
Доказательство. Доказательство этого утверждения напоминает планиметрическое доказательство возможности вписать окружность в произвольный треугольник.
Получим формулу, позволяющую вычислить радиус вписанной в тетраэдр SABC сферы. Для этого заметим, что объем пирамиды SABC равен сумме объемов пирамид OABC, OSCA, OSAB, OSCB, причем высота каждой из пирамид OABC, OSCA, OSAB, OSCB равна радиусу R вписанной в пирамиду SABC сферы. Если обозначить площади граней тетраэдра SABC символами
а объемы пирамид SABC, OABC, OSCA, OSAB, OSCB – символами
то справедливы следующие равенства:
где символом Sполн обозначена площадь полной поверхности пирамиды SABC.
Замечание 2. Если в пирамиду (необязательно треугольную) можно вписать сферу, то, рассуждая аналогично, можно получить следующую формулу для радиуса вписанной в пирамиду сферы
где символами Vпир и Sполн обозначены объем и площадь полной поверхности пирамиды соответственно.
637. Докажите, что центр сферы, описанной около: а) правильной призмы, лежит в середине отрезка, соединяющего центры оснований этой призмы; б) правильной пирамиды, лежит на высоте этой пирамиды или ее продолжении.
Все точки, которые лежат на перпендикуляре, проведенному через точку В к верхнему основанию призмы равноудалены от вершин треугольника PQR.
Все точки, которые лежат на перпендикуляре, проведенному через т. А, к верхнему основанию призмы, равноудалены от вершин ΔP1Q1R1. Т.к. призма правильная, то треугольники P1Q1R и PQR проектируются один на другой, следовательно, точка В проектируется в точку А и обратно. Поэтому, АВ ⊥ плоскости PQR. Тогда, отрезок АВ является геометрическим местом точек, равноудаленных от вершин каждого из треугольников. А его середина — точка О — равноудалена от вершин ΔP1Q1R1 и от вершин ΔPQR на расстояние R, равное радиусу описанной около призмы сферы.
б) Построим из вершины D пирамиды высоту DH ⊥ плоскости АВС. Проведем отрезки НА, НВ, НС.
ΔDHA=ΔDHB=ΔDHC (они прямоугольные, DH — общий катет, АD=BD=BC — по условию).
НА=НВ=НС=r. r — радиус описанной около ΔАВС окружности.
Проведем отрезок ОG ⊥ плоскости ABC (точка G на рисунке не показана). Проведем отрезки GA, GB, GC, ОА, ОВ, ОС, ΔDCA=ΔOGB=ΔOGC (катет ОG — общий, ОА=ОВ=ОС —R, R — радиус сферы). Значит, GA=GB=GC=r, r — радиус окружности, описанной около AАВС. Следовательно, вокруг ΔАВС можно описать единственную окружность.
Точки Н и G совпадают, и точки D, H, O лежат на одной прямой. Следовательно, центр сферы О лежит на высоте пирамиды DH или на продолжении за точку Н, что и показано на рисунке.
Презентация была опубликована 4 года назад пользователемДарья Николаевич
Похожие презентации
Презентация на тему: » Комбинации шара с пирамидой. Определение Пирамида называется вписанной в шар, если все ее вершины лежат на границе этого шара. При этом шар называется.» — Транскрипт:
1 Комбинации шара с пирамидой
2 Определение Пирамида называется вписанной в шар, если все ее вершины лежат на границе этого шара. При этом шар называется описанным около пирамиды.
4 Теорема Около пирамиды можно описать шар тогда и только тогда, когда около ее основания можно описать окружность. Чтобы не загромождать чертёж, шар не изображают, а показывают только его центр и радиус.
5 Доказательство Докажем сначала, что, если пирамида вписана в сферу, то около ее основания можно описать окружность. Для этого рассмотрим рисунок 1. Рис.1 На рисунке 1 изображена пирамида SA 1 A 2. A n, вписанная в сферу. Плоскость основания пирамиды пересекает сферу по окружности, в которую вписан многоугольник A 1 A 2. A n – основание пирамиды. Доказано.
6 Теперь предположим, что около основания A 1 A 2. A n пирамиды SA 1 A 2. A n можно описать окружность. Докажем, что в этом случае около пирамиды SA 1 A 2. A n можно описать сферу. С этой целью обозначим центр окружности, описанной около многоугольника A 1 A 2. A n, символом O’ и проведем прямую p, проходящую через точку O’ и перпендикулярную к плоскости многоугольника A 1 A 2. A n (рис. 2). Рис.2
7 Рассмотрим плоскость β, проходящую через середину отрезка SA n и перпендикулярную к этому отрезку. Если обозначить буквой O точку пересечения плоскости β с прямой p, то точка O и будет центром сферы, описанной около пирамиды SA 1 A 2. A n. Рис.3 Итак, мы доказали, что точка O находится на одном и том же расстоянии от всех вершин пирамиды SA 1 A 2. A n. Отсюда вытекает, что точка O является центром сферы, описанной около пирамиды SA 1 A 2. A n.
8 Для завершения доказательства теоремы остается лишь доказать, что плоскость β и прямая p действительно пересекаются. Если предположить, что это не так, то из такого предположения будет следовать, что плоскость β и прямая p параллельны, а, значит, точка S лежит в плоскости A 1 A 2. A n, что противоречит определению пирамиды. Теорема доказана.
9 Центр шара, описанного около пирамиды лежит в точке пересечения прямой, перпендикулярной основанию пирамиды, проходящей через центр окружности, описанной около этого основания, и плоскости, перпендикулярной любому боковому ребру, проведенной через середину этого ребра.
10 Шар, в частности, можно описать: около правильной пирамиды, около треугольной пирамиды, около четырехугольной пирамиды, у которой сумма противоположных углов равна 180 градусов.
11 Теорема Если боковые ребра пирамиды равны между собой или одинаково наклонены к плоскости основания, то около такой пирамиды можно описать шар. Центр шара, в этом случае, лежит в точке пересечения высоты пирамиды (или ее продолжения) с перпендикуляром к боковому ребру, проведенному через его середину в плоскости бокового ребра и высоты.
13 Задача 1 Высота правильной четырехугольной пирамиды равна 4 см, а длина бокового ребра- 5 см. Вычислите радиус шара, описанной около пирамиды.
15 Задача 3 Около правильной четырехугольной пирамиды SABCD описана сфера. Вычислите радиус этой сферы, если длина стороны основания равна 4 см, а боковые ребра наклонены к плоскости основания под углом 60.
16 Определение Пирамида называется описанной около шара, если шар касается всех граней пирамиды. При этом шар называется вписанными в пирамиду.
17 Теорема Если боковые грани пирамиды одинаково наклонены к основанию, то в такую пирамиду можно вписать шар.
18 О – точка, равноудалённая от всех граней пирамиды OM=ON=OK=r ш. M, N, K – точки касания. Замечание. Ортогональной проекцией шара является круг, который не является вписанным в многоугольник, являющийся основанием. Где лежит центр? Плоскость, проходящая через биссектрису, называется бис сектором, биссекторной или биссектральной двугранных углов пирамиды.
19 Теорема Если в пирамиду вписан шар, то его центр является точкой пересечения биссекторных плоскостей всех двугранных углов пирамиды. Теорема обратная Если биссекторные плоскости всех двугранных углов пересекаются в одной точке, то в пирамиду можно вписать шар.
20 Если в основание пирамиды можно вписать окружность, и если основание высоты пирамиды является центром этой окружности, то в пирамиду можно вписать сферу. Центр сферы, касающейся всех ребер пирамиды, лежит на ее высоте тогда и только тогда, когда пирамида правильная.
21 Определение Сфера называется вневписанной в n – угольную пирамиду, если она касается основания пирамиды и продолжения всех ее боковых граней. Определение Сфера называется полу вневписанной в пирамиду, если она касается всех сторон основания и продолжений всех боковых ребер пирамиды.
22 Теорема Для пирамиды существуют одновременно полу вписанная и полу вневписанная сферы тогда и только тогда, когда пирамида правильная.
23 Вписанная в тетраэдр и описанная около него сферы концентрические (их центры совпадают) тогда и только тогда, когда тетраэдр удовлетворяет любому из условий: сумма плоских углов при любых трех вершинах равна 180°. сумма плоских углов при двух каких – либо вершинах равна 180°, и какие –либо два противоположных ребра равны. грани равны Р граней равны S граней равны скрещивающиеся ребра попарно равны И др. Теорема
24 Формулы Радиус шара, вписанного в пирамиду V – объем пирамиды S п.п. – площадь полной поверхности пирамиды Радиус сферы, вписанной в правильную пирамиду
25 Задача 1 Двугранный угол при ребре правильной треугольной пирамиды равен 60°, а длина стороны ее основания равна 6 см. Вычислите радиус сферы, вписанной в пирамиду.
26 Задача 2 Радиус сферы, вписанной в правильную четырехугольную пирамиду, равен 2 см, а двугранные углы при ребрах основания пирамиды равны 60°. Вычислите площадь боковой поверхности пирамиды.
28 Комбинация шара с усеченной пирамидой Около любой правильной усеченной пирамиды можно описать шар.
29 В правильную усеченную пирамиду можно вписать шар в том и только в том случае, если апофема пирамиды равна сумме апофем оснований.
31 Задача Докажите, что если в правильную усеченную четырехугольную пирамиду можно вписать сферу, то апофема пирамиды равна полусумме сторон оснований ее боковой грани.